Ruofei Li,Liang Yu,Mengchen Xu,Xiao Xiao,Yushan Tang,Cheng Lv,Yu Zhang,Tao Hong,Yibo Wang
{"title":"Androgen Receptor Governs Tip Cell Formation in Cerebrovascular Malformations.","authors":"Ruofei Li,Liang Yu,Mengchen Xu,Xiao Xiao,Yushan Tang,Cheng Lv,Yu Zhang,Tao Hong,Yibo Wang","doi":"10.1161/circresaha.125.326471","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nCerebrovascular malformations are a pivotal cause of hemorrhage and neurological disability, orchestrated largely by aberrant vascular homeostasis. However, a malformed angiogenic regulation pattern remains elusive.\r\n\r\nMETHODS\r\nSingle-cell transcriptome analysis uncovered the endothelial features of human cerebral cavernous malformations and brain arteriovenous malformations, 2 typical cerebrovascular malformation diseases. Endothelial AR (androgen receptor, a steroid receptor in the nuclear receptor superfamily) overexpression was conducted to investigate its involvement in tip cell formation. ARD-2585, an AR degradator, was applied to mouse models of cerebral cavernous malformations (endothelial-specific Pdcd10 knockout mice) and brain arteriovenous malformations (endothelial-specific KrasG12D mutant [KrasG12D] mice) to evaluate its vascular rescue potential.\r\n\r\nRESULTS\r\nWe profiled single-cell transcriptomes of 13 human cerebrovascular malformation samples (10 cerebral cavernous malformations and 3 brain arteriovenous malformations) and 13 control brain samples, identifying a crucial pathological tip cell population in lesions. Integrative bioinformatics revealed a systemic endothelial regulatory network, with AR as a key regulator of this aberrant state. AR expression was elevated in endothelial cells from both human cerebrovascular malformations and Pdcd10 knockout/KrasG12D mice, correlating with suppressed DLL4 (delta-like canonical Notch ligand 4)-Notch signaling. AR overexpression augmented endothelial tube formation, filopodia extension, and polarization in vitro and fostered sex-independent vascular sprouting in vivo. High levels of AR facilitated proangiogenic gene transcription by recruiting coactivators EP300 (EP300 lysine acetyltransferase)/CBP (CREB binding lysine acetyltransferase), augmenting histone H3 lysine 18/histone H3 lysine 27 acetylation, and boosting chromatin accessibility, potentially independent of androgen. Notably, ARD-2585 treatment effectively normalized vascular anomalies and alleviated cerebral hemorrhage in Pdcd10 knockout and KrasG12D mice.\r\n\r\nCONCLUSIONS\r\nWe delineated a novel androgen-independent AR-mediated endothelial sprouting pattern in malformed cerebrovasculature, highlighting a promising foundation for developing interventions targeting tip cells in angiogenic diseases.","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"22 1","pages":""},"PeriodicalIF":16.2000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/circresaha.125.326471","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND
Cerebrovascular malformations are a pivotal cause of hemorrhage and neurological disability, orchestrated largely by aberrant vascular homeostasis. However, a malformed angiogenic regulation pattern remains elusive.
METHODS
Single-cell transcriptome analysis uncovered the endothelial features of human cerebral cavernous malformations and brain arteriovenous malformations, 2 typical cerebrovascular malformation diseases. Endothelial AR (androgen receptor, a steroid receptor in the nuclear receptor superfamily) overexpression was conducted to investigate its involvement in tip cell formation. ARD-2585, an AR degradator, was applied to mouse models of cerebral cavernous malformations (endothelial-specific Pdcd10 knockout mice) and brain arteriovenous malformations (endothelial-specific KrasG12D mutant [KrasG12D] mice) to evaluate its vascular rescue potential.
RESULTS
We profiled single-cell transcriptomes of 13 human cerebrovascular malformation samples (10 cerebral cavernous malformations and 3 brain arteriovenous malformations) and 13 control brain samples, identifying a crucial pathological tip cell population in lesions. Integrative bioinformatics revealed a systemic endothelial regulatory network, with AR as a key regulator of this aberrant state. AR expression was elevated in endothelial cells from both human cerebrovascular malformations and Pdcd10 knockout/KrasG12D mice, correlating with suppressed DLL4 (delta-like canonical Notch ligand 4)-Notch signaling. AR overexpression augmented endothelial tube formation, filopodia extension, and polarization in vitro and fostered sex-independent vascular sprouting in vivo. High levels of AR facilitated proangiogenic gene transcription by recruiting coactivators EP300 (EP300 lysine acetyltransferase)/CBP (CREB binding lysine acetyltransferase), augmenting histone H3 lysine 18/histone H3 lysine 27 acetylation, and boosting chromatin accessibility, potentially independent of androgen. Notably, ARD-2585 treatment effectively normalized vascular anomalies and alleviated cerebral hemorrhage in Pdcd10 knockout and KrasG12D mice.
CONCLUSIONS
We delineated a novel androgen-independent AR-mediated endothelial sprouting pattern in malformed cerebrovasculature, highlighting a promising foundation for developing interventions targeting tip cells in angiogenic diseases.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.