Impact of VAEformer Compression Algorithm Precision Loss on the Tropospheric Delays for Microwave Remote Sensing

IF 8.6 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Junsheng Ding;Cancan Xu;Wu Chen;Junping Chen;Jungang Wang;Yize Zhang;Lei Bai;Tao Han;Yuhao Xiong
{"title":"Impact of VAEformer Compression Algorithm Precision Loss on the Tropospheric Delays for Microwave Remote Sensing","authors":"Junsheng Ding;Cancan Xu;Wu Chen;Junping Chen;Jungang Wang;Yize Zhang;Lei Bai;Tao Han;Yuhao Xiong","doi":"10.1109/TGRS.2025.3587944","DOIUrl":null,"url":null,"abstract":"Ray-tracing through numerical weather models (NWMs) is one of the most accurate methods for determining slant tropospheric delays (STDs) in microwave remote sensing. However, the massive data volumes of high-resolution NWMs create substantial I/O operations, limiting large-scale ray-tracing on general hardware. This constraint has historically necessitated parameterized tropospheric delay models, which are disseminated as standardized products (e.g., zenith delays with mapping functions and horizontal gradients). Recently, the AI-driven VAEformer algorithm revolutionized NWM compression, achieving >470:1 ratios by compressing 37 pressure level, 0.25° <inline-formula> <tex-math>$\\times$ </tex-math></inline-formula> 0.25° fifth-generation ECMWF atmospheric reanalysis (ERA5) data into files smaller than surface-only VMF3 products (1° <inline-formula> <tex-math>$\\times$ </tex-math></inline-formula> 1° resolution). This breakthrough challenges the conventional reliance on parameterized models as the sole practical solution. We quantified discrepancies in tropospheric delay parameters between original ERA5 and variational autoencoder transformer (VAEformer)-compressed extreme compression of ERA5 (CRA5) data across 2022, evaluating compression fidelity on global grids and against in situ zenith tropospheric delay (ZTD) estimates. Results show global average precision loss from compression is <2>10 mm). Our findings demonstrate CRA5 as a reliable ERA5 substitute, with compression-induced inaccuracies being negligible for most microwave-based remote sensing applications. This work underscores that parameterized delay modeling is no longer the exclusive pathway, enabling efficient local computation of high-precision STDs without through mapping functions and gradients.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"63 ","pages":"1-11"},"PeriodicalIF":8.6000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11077436/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Ray-tracing through numerical weather models (NWMs) is one of the most accurate methods for determining slant tropospheric delays (STDs) in microwave remote sensing. However, the massive data volumes of high-resolution NWMs create substantial I/O operations, limiting large-scale ray-tracing on general hardware. This constraint has historically necessitated parameterized tropospheric delay models, which are disseminated as standardized products (e.g., zenith delays with mapping functions and horizontal gradients). Recently, the AI-driven VAEformer algorithm revolutionized NWM compression, achieving >470:1 ratios by compressing 37 pressure level, 0.25° $\times$ 0.25° fifth-generation ECMWF atmospheric reanalysis (ERA5) data into files smaller than surface-only VMF3 products (1° $\times$ 1° resolution). This breakthrough challenges the conventional reliance on parameterized models as the sole practical solution. We quantified discrepancies in tropospheric delay parameters between original ERA5 and variational autoencoder transformer (VAEformer)-compressed extreme compression of ERA5 (CRA5) data across 2022, evaluating compression fidelity on global grids and against in situ zenith tropospheric delay (ZTD) estimates. Results show global average precision loss from compression is <2>10 mm). Our findings demonstrate CRA5 as a reliable ERA5 substitute, with compression-induced inaccuracies being negligible for most microwave-based remote sensing applications. This work underscores that parameterized delay modeling is no longer the exclusive pathway, enabling efficient local computation of high-precision STDs without through mapping functions and gradients.
VAEformer压缩算法精度损失对微波遥感对流层时延的影响
通过数值天气模式(NWMs)进行射线追踪是微波遥感中确定斜对流层延迟(STDs)最精确的方法之一。然而,高分辨率nwm的大量数据量产生了大量的I/O操作,限制了在一般硬件上的大规模光线追踪。这一限制在历史上需要参数化对流层延迟模型,这些模型作为标准化产品传播(例如,具有映射函数和水平梯度的天顶延迟)。最近,人工智能驱动的VAEformer算法彻底改变了NWM压缩,通过将37个压力级别,0.25°$ $ × 0.25°第五代ECMWF大气再分析(ERA5)数据压缩到比地面VMF3产品(1°$ $ × 1°分辨率)更小的文件中,实现了bbb470:1的比率。这一突破挑战了传统上对参数化模型作为唯一实际解决方案的依赖。我们量化了原始ERA5和变分自编码器变压器(VAEformer)压缩的2022年ERA5 (CRA5)数据的极端压缩之间对流层延迟参数的差异,评估了全球网格上的压缩保真度和原位天顶对流层延迟(ZTD)估计。结果表明,压缩造成的全球平均精度损失为10 mm)。我们的研究结果表明,CRA5是可靠的ERA5替代品,对于大多数基于微波的遥感应用,压缩引起的不准确性可以忽略不计。该研究强调,参数化延迟建模不再是唯一的途径,可以在不通过映射函数和梯度的情况下实现高精度std的高效局部计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信