A $\mathcal{K}$-Divergence Based Approach for Robust Regression Analysis

IF 5.8 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yair Sorek;Koby Todros
{"title":"A $\\mathcal{K}$-Divergence Based Approach for Robust Regression Analysis","authors":"Yair Sorek;Koby Todros","doi":"10.1109/TSP.2025.3585830","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of robust regression analysis in the presence of outliers in <italic>both</i> input and output data sets. In this context, we infer the input-output relation of a system by minimizing a new robust loss between the outputs and a presumed parametric function of the inputs. The considered loss is derived from an empirical estimate of a non-trivially modified version of the recently developed <inline-formula><tex-math>$\\mathcal{K}$</tex-math></inline-formula>-divergence (adapted here for regression analysis). This modified version utilizes a model-free data-weighting mechanism based on Parzen’s non-parametric <inline-formula><tex-math>$\\mathcal{K}$</tex-math></inline-formula>ernel density estimator, associated with the underlying joint distribution of the input and output data. The considered Parzen’s estimator involves two strictly positive smoothing “<inline-formula><tex-math>$\\mathcal{K}$</tex-math></inline-formula>”ernel functions. These are defined independently across the input and output domains with possibly different bandwidth parameters. This data-weighting strategy leads to mitigation of low-density contaminations attributed to different types of input and output outlying measurements. The considered approach is illustrated for robust training of GELU neural networks, with applications to function approximation and time-series prediction.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"3253-3269"},"PeriodicalIF":5.8000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11075545/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the problem of robust regression analysis in the presence of outliers in both input and output data sets. In this context, we infer the input-output relation of a system by minimizing a new robust loss between the outputs and a presumed parametric function of the inputs. The considered loss is derived from an empirical estimate of a non-trivially modified version of the recently developed $\mathcal{K}$-divergence (adapted here for regression analysis). This modified version utilizes a model-free data-weighting mechanism based on Parzen’s non-parametric $\mathcal{K}$ernel density estimator, associated with the underlying joint distribution of the input and output data. The considered Parzen’s estimator involves two strictly positive smoothing “$\mathcal{K}$”ernel functions. These are defined independently across the input and output domains with possibly different bandwidth parameters. This data-weighting strategy leads to mitigation of low-density contaminations attributed to different types of input and output outlying measurements. The considered approach is illustrated for robust training of GELU neural networks, with applications to function approximation and time-series prediction.
基于$\mathcal{K}$-散度的稳健回归分析方法
本文研究了输入和输出数据集中存在异常值时的鲁棒回归分析问题。在这种情况下,我们通过最小化输出和输入的假定参数函数之间的新鲁棒损失来推断系统的输入输出关系。考虑的损失来自最近开发的$\mathcal{K}$-散度的非寻常修改版本的经验估计(此处适用于回归分析)。这个改进的版本利用基于Parzen的非参数$\mathcal{K}$ kernel密度估计器的无模型数据加权机制,与输入和输出数据的底层联合分布相关联。所考虑的Parzen估计量涉及两个严格正的平滑“$\mathcal{K}$”核函数。这些是在输入和输出域中独立定义的,可能具有不同的带宽参数。这种数据加权策略可减少由于不同类型的输入和输出外围测量而造成的低密度污染。所考虑的方法用于GELU神经网络的鲁棒训练,并应用于函数逼近和时间序列预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信