An Accurate and Efficient Scheme for Function Extension on Smooth Domains

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Charles L. Epstein, Fredrik Fryklund, Shidong Jiang
{"title":"An Accurate and Efficient Scheme for Function Extension on Smooth Domains","authors":"Charles L. Epstein, Fredrik Fryklund, Shidong Jiang","doi":"10.1137/23m1622064","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1427-1453, August 2025. <br/> Abstract. A new scheme is proposed to construct an [math]-times differentiable function extension of an [math]-times differentiable function defined on a smooth domain, [math] in [math]-dimensions. The extension scheme relies on an explicit formula consisting of a linear combination of [math] function values in [math] which extends the function along directions normal to the boundary. Smoothness tangent to the boundary is automatic. The performance of the scheme is illustrated by using function extension as part of a numerical solver for the Poisson equation on domains with complex geometry in both two and three dimensions. Although the cost of extending the function increases mildly with the extension order, it remains a small fraction of the overall algorithm. Moreover, the modest additional work required for high order function extensions leads to considerably more accurate solutions of the partial differential equation.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"35 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1622064","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1427-1453, August 2025.
Abstract. A new scheme is proposed to construct an [math]-times differentiable function extension of an [math]-times differentiable function defined on a smooth domain, [math] in [math]-dimensions. The extension scheme relies on an explicit formula consisting of a linear combination of [math] function values in [math] which extends the function along directions normal to the boundary. Smoothness tangent to the boundary is automatic. The performance of the scheme is illustrated by using function extension as part of a numerical solver for the Poisson equation on domains with complex geometry in both two and three dimensions. Although the cost of extending the function increases mildly with the extension order, it remains a small fraction of the overall algorithm. Moreover, the modest additional work required for high order function extensions leads to considerably more accurate solutions of the partial differential equation.
光滑域上函数扩展的一种精确有效的方法
SIAM数值分析杂志,第63卷,第4期,第1427-1453页,2025年8月。摘要。提出了一种新的构造[math]-次可微函数的方案,该方案是在[math]-维光滑定义域上定义的[math]-次可微函数的扩展。扩展方案依赖于一个显式公式,该公式由[math]中[math]函数值的线性组合组成,该公式沿着与边界垂直的方向扩展函数。与边界相切的平滑度是自动的。通过将函数扩展作为二维和三维复杂几何域上泊松方程数值求解器的一部分来说明该方案的性能。虽然扩展函数的成本随着扩展顺序的增加而轻微增加,但它仍然是整个算法的一小部分。此外,高阶函数扩展所需的少量额外工作导致偏微分方程的解相当精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信