Engineered Coenzyme A Biosynthesis and Butyrate Transporter Drives High‐Efficient Butyrate Synthesis in Escherichia coli

IF 3.6 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jinhui Li, Yi Xing, Xin Wang, Tong Zhu, Feiyu Fan, Hongtao Xu, Peipei Han, Jun Cai, Xinna Zhu, Xueli Zhang
{"title":"Engineered Coenzyme A Biosynthesis and Butyrate Transporter Drives High‐Efficient Butyrate Synthesis in Escherichia coli","authors":"Jinhui Li, Yi Xing, Xin Wang, Tong Zhu, Feiyu Fan, Hongtao Xu, Peipei Han, Jun Cai, Xinna Zhu, Xueli Zhang","doi":"10.1002/bit.70018","DOIUrl":null,"url":null,"abstract":"Butyric acid is a four‐carbon fatty acid with a range of applications in chemical, food and pharmaceutical industries. In this study, a heterologous butyrate biosynthetic pathway was engineered in <jats:italic>Escherichia coli</jats:italic>, which was afflicted by low titer and low yield. To address these issues, two key strategies for metabolic engineering of <jats:italic>E. coli</jats:italic> were implemented by enhancing coenzyme A (CoA) biosynthesis and optimizing butyrate transport. First, the CoA biosynthesis pathway was engineered through alleviating CoA‐mediated inhibition, and enhancing the supply of pantothenate and cysteine precursors. Second, a TolC‐associated MdtEF efflux pumps was identified and optimized to mitigate butyrate reuptake. The combined implementation in strain JH016 led to 11.1‐fold and 86% increase of butyrate titer and yield, resulting in production of 21.12 g/L butyrate with a yield of 0.95 mol/mol. Our results suggested that CoA engineering and butyrate transporter optimization had a synergistic effect on butyrate production. Furthermore, these strategies could be broadly utilized for the production of various other useful chemicals in the fields of metabolic engineering and synthetic biology.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"71 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.70018","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Butyric acid is a four‐carbon fatty acid with a range of applications in chemical, food and pharmaceutical industries. In this study, a heterologous butyrate biosynthetic pathway was engineered in Escherichia coli, which was afflicted by low titer and low yield. To address these issues, two key strategies for metabolic engineering of E. coli were implemented by enhancing coenzyme A (CoA) biosynthesis and optimizing butyrate transport. First, the CoA biosynthesis pathway was engineered through alleviating CoA‐mediated inhibition, and enhancing the supply of pantothenate and cysteine precursors. Second, a TolC‐associated MdtEF efflux pumps was identified and optimized to mitigate butyrate reuptake. The combined implementation in strain JH016 led to 11.1‐fold and 86% increase of butyrate titer and yield, resulting in production of 21.12 g/L butyrate with a yield of 0.95 mol/mol. Our results suggested that CoA engineering and butyrate transporter optimization had a synergistic effect on butyrate production. Furthermore, these strategies could be broadly utilized for the production of various other useful chemicals in the fields of metabolic engineering and synthetic biology.
工程辅酶A生物合成和丁酸转运蛋白驱动大肠杆菌高效合成丁酸盐
丁酸是一种四碳脂肪酸,在化工、食品和制药工业中有着广泛的应用。本研究在大肠杆菌中构建了一种低效价、低产率的异源丁酸酯生物合成途径。为了解决这些问题,本研究通过加强辅酶A (CoA)的生物合成和优化丁酸盐的转运来实现大肠杆菌代谢工程的两个关键策略。首先,通过减轻CoA介导的抑制,增强泛酸和半胱氨酸前体的供应,设计了CoA生物合成途径。其次,确定并优化了与TolC相关的MdtEF外排泵,以减轻丁酸再摄取。在菌株JH016上联合实施,丁酸滴度和产率分别提高了11.1倍和86%,产率为21.12 g/L,产率为0.95 mol/mol。结果表明,CoA工程和丁酸转运体优化对丁酸酯的合成具有协同效应。此外,这些策略可广泛用于代谢工程和合成生物学领域的各种其他有用化学品的生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology and Bioengineering
Biotechnology and Bioengineering 工程技术-生物工程与应用微生物
CiteScore
7.90
自引率
5.30%
发文量
280
审稿时长
2.1 months
期刊介绍: Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include: -Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering -Animal-cell biotechnology, including media development -Applied aspects of cellular physiology, metabolism, and energetics -Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology -Biothermodynamics -Biofuels, including biomass and renewable resource engineering -Biomaterials, including delivery systems and materials for tissue engineering -Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control -Biosensors and instrumentation -Computational and systems biology, including bioinformatics and genomic/proteomic studies -Environmental biotechnology, including biofilms, algal systems, and bioremediation -Metabolic and cellular engineering -Plant-cell biotechnology -Spectroscopic and other analytical techniques for biotechnological applications -Synthetic biology -Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信