İlker Ünal, Esin Ünal, Yaşar Sertdemir, Murat Kobaner
{"title":"Defining optimal cut-off points for multiple class ROC analysis: generalization of the Index of Union method.","authors":"İlker Ünal, Esin Ünal, Yaşar Sertdemir, Murat Kobaner","doi":"10.1080/10543406.2025.2528639","DOIUrl":null,"url":null,"abstract":"<p><p>A variety of well-developed methodologies exist for the purpose of binary classification. Some of these methodologies have been extended to accommodate multi-class settings with three or even more classes. In this study, we generalize the Index of Union (IU) method, which we previously demonstrated to be more effective than other methods in binary classification. We evaluate the Generalized Index of Union (GIU) method and compare it with existing methods using both simulated and real data. The results of the comparisons demonstrated that the GIU method is an effective approach in a multitude of scenarios, including those involving high volume under the surface (VUS) values and all distributions. It is therefore recommended that the GIU method can be used to determine the optimal cut-off points in all the ROC analyses due to its structure, which does not require complex calculations and thus provides fast results.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-19"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2025.2528639","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
A variety of well-developed methodologies exist for the purpose of binary classification. Some of these methodologies have been extended to accommodate multi-class settings with three or even more classes. In this study, we generalize the Index of Union (IU) method, which we previously demonstrated to be more effective than other methods in binary classification. We evaluate the Generalized Index of Union (GIU) method and compare it with existing methods using both simulated and real data. The results of the comparisons demonstrated that the GIU method is an effective approach in a multitude of scenarios, including those involving high volume under the surface (VUS) values and all distributions. It is therefore recommended that the GIU method can be used to determine the optimal cut-off points in all the ROC analyses due to its structure, which does not require complex calculations and thus provides fast results.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.