{"title":"A single-snapshot inverse solver for two-species graph model of tau pathology spreading in human Alzheimer's disease.","authors":"Zheyu Wen, Ali Ghafouri, George Biros","doi":"10.1186/s40708-025-00264-z","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a method that uses a two-species ordinary differential equation (ODE) model for subject-specific misfolded tau protein spreading in Alzheimer's disease (AD) and calibrates it from magnetic resonance imaging (MRI) and positron emission tomography (PET) scans. The ODE model is a variant of the heterodimer Fisher-Kolmogorov (HFK) model. The unknown model parameters are the initial condition (IC) for tau and three scalar parameters representing the migration, proliferation, and clearance of tau proteins. Driven by imaging data, these parameters are estimated by formulating a constrained optimization problem with a sparsity regularization for the IC. This optimization problem is solved with a projection-based quasi-Newton algorithm. We evaluate the performance of our method on both synthetic and clinical data. Subjects are from the AD Neuroimaging Initiative (ADNI) datasets: 455 cognitively normal (CN), 212 mild cognitive impairment (MCI), and 45 AD subjects. We compare the performance of our approach to the commonly used Fisher-Kolmogorov (FK) model with a fixed IC at the entorhinal cortex (EC). Our method demonstrates an average improvement of 19.6% relative error compared to the FK model on the AD dataset. HFK also achieves an R-squared score of 0.591 for fitting AD data compared with 0.256 from FK model results with IC fixing at EC. The inverted IC from our scheme indicates that the EC is the most likely initial seeding region if subcortical regions are excluded from the analysis. However, other regions also have probability to be the IC seeding regions. Furthermore, for cases that have longitudinal data, we estimate a subject-specific AD onset time.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"12 1","pages":"18"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-025-00264-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a method that uses a two-species ordinary differential equation (ODE) model for subject-specific misfolded tau protein spreading in Alzheimer's disease (AD) and calibrates it from magnetic resonance imaging (MRI) and positron emission tomography (PET) scans. The ODE model is a variant of the heterodimer Fisher-Kolmogorov (HFK) model. The unknown model parameters are the initial condition (IC) for tau and three scalar parameters representing the migration, proliferation, and clearance of tau proteins. Driven by imaging data, these parameters are estimated by formulating a constrained optimization problem with a sparsity regularization for the IC. This optimization problem is solved with a projection-based quasi-Newton algorithm. We evaluate the performance of our method on both synthetic and clinical data. Subjects are from the AD Neuroimaging Initiative (ADNI) datasets: 455 cognitively normal (CN), 212 mild cognitive impairment (MCI), and 45 AD subjects. We compare the performance of our approach to the commonly used Fisher-Kolmogorov (FK) model with a fixed IC at the entorhinal cortex (EC). Our method demonstrates an average improvement of 19.6% relative error compared to the FK model on the AD dataset. HFK also achieves an R-squared score of 0.591 for fitting AD data compared with 0.256 from FK model results with IC fixing at EC. The inverted IC from our scheme indicates that the EC is the most likely initial seeding region if subcortical regions are excluded from the analysis. However, other regions also have probability to be the IC seeding regions. Furthermore, for cases that have longitudinal data, we estimate a subject-specific AD onset time.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing