Oleksandra Fanari, Dylan Bloch, Yuchen Qiu, Michele Meseonznik, Dinara Boyko, Amr Makhamreh, Meni Wanunu, Sara H Rouhanifard
{"title":"Pseudouridine reprogramming in the human T cell epitranscriptome: from primary to immortalized states.","authors":"Oleksandra Fanari, Dylan Bloch, Yuchen Qiu, Michele Meseonznik, Dinara Boyko, Amr Makhamreh, Meni Wanunu, Sara H Rouhanifard","doi":"10.1261/rna.080633.125","DOIUrl":null,"url":null,"abstract":"<p><p>Immortalized cell lines are commonly used as proxies for primary cells in human biology research. For example, Jurkat leukemic T cells fundamentally contributed to uncovering T cell signaling, activation, and immune responses. However, the immortalization process can alter key cellular properties, and researchers widely believe this process could significantly change RNA modification machinery and modification sites. In this study, we focus on pseudouridine (ψ), one of the most abundant mRNA modifications, and compare ψ profiles in mRNA from primary and immortalized T cells using direct RNA sequencing (DRS). Surprisingly, 87% of ψ-sites were shared between the two cell types, primarily in transcripts encoding proteins involved in essential cellular processes, including RNA-modification regulation. Furthermore, the analysis of the 13% of sites unique to each cell type reveals that Jurkat cells contained transcripts linked to immune activation and oncogenesis, while primary T cells contained transcripts associated with calcium signaling and intracellular trafficking. We provide a list of these genes, which should be considered when using immortalized cells to study RNA modifications in immunology contexts. Most differences were driven by whether the mRNA was present or absent in the immortalized or primary cell type. Interestingly, RNA-modification enzyme expression levels were highly conserved in both cell types. This suggests that site-specific differences in ψ levels arise from regulatory processes acting in trans rather than differences in modification enzyme levels.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.080633.125","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immortalized cell lines are commonly used as proxies for primary cells in human biology research. For example, Jurkat leukemic T cells fundamentally contributed to uncovering T cell signaling, activation, and immune responses. However, the immortalization process can alter key cellular properties, and researchers widely believe this process could significantly change RNA modification machinery and modification sites. In this study, we focus on pseudouridine (ψ), one of the most abundant mRNA modifications, and compare ψ profiles in mRNA from primary and immortalized T cells using direct RNA sequencing (DRS). Surprisingly, 87% of ψ-sites were shared between the two cell types, primarily in transcripts encoding proteins involved in essential cellular processes, including RNA-modification regulation. Furthermore, the analysis of the 13% of sites unique to each cell type reveals that Jurkat cells contained transcripts linked to immune activation and oncogenesis, while primary T cells contained transcripts associated with calcium signaling and intracellular trafficking. We provide a list of these genes, which should be considered when using immortalized cells to study RNA modifications in immunology contexts. Most differences were driven by whether the mRNA was present or absent in the immortalized or primary cell type. Interestingly, RNA-modification enzyme expression levels were highly conserved in both cell types. This suggests that site-specific differences in ψ levels arise from regulatory processes acting in trans rather than differences in modification enzyme levels.
期刊介绍:
RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.