{"title":"Is environmental enrichment effective in modulating autophagy markers in the brain exposed to adverse conditions? A systematic review.","authors":"Clarice Beatriz Gonçalves Silva, Matheus Santos de Sousa Fernandes, Debora Dantas Nucci Cerqueira, Gabriela Carvalho Jurema Santos, Fatma Hilal Yagin, Yalin Aygun, Georgian Badicu, Fabiana S Evangelista, Pablo Prieto-González, Fabrício Oliveira Souto, Ashit Kumar Dutta, Sameer Badri Al-Mhanna, Abedelmalek Kalefh Tabnjh","doi":"10.3389/fncel.2025.1624500","DOIUrl":null,"url":null,"abstract":"<p><p>Autophagy is a key regulator of cellular homeostasis and neuronal survival, particularly under adverse physiological conditions. Environmental enrichment (EE), a non-pharmacological intervention providing enhanced sensory, cognitive, and motor stimulation, may modulate autophagic processes in the brain. This systematic review aimed to synthesize preclinical findings on the effects of EE on autophagy markers in rodent models subjected to diverse adverse conditions. A literature search across PubMed, Scopus, ScienceDirect, and embase yielded eight eligible studies meeting inclusion criteria. EE was found to be generally associated with upregulation of key autophagic markers such as Beclin-1, LC3-II/LC3-I ratio, cathepsins, p62, p-TFEB, and LAMP-1 across brain regions including the cortex, hippocampus, and penumbral area. However, reductions in some markers were also observed, indicating that the modulatory effects of EE are context-dependent and may vary with disease model, brain region, or EE protocol duration. These findings suggest that EE holds promise as an adjunctive strategy to modulate autophagy and mitigate neurodegeneration, though heterogeneity in study design and outcomes warrants caution during interpretation. Further mechanistic and sex-specific studies are needed to clarify the therapeutic relevance of EE-induced autophagic modulation.</p>","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"19 ","pages":"1624500"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncel.2025.1624500","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Autophagy is a key regulator of cellular homeostasis and neuronal survival, particularly under adverse physiological conditions. Environmental enrichment (EE), a non-pharmacological intervention providing enhanced sensory, cognitive, and motor stimulation, may modulate autophagic processes in the brain. This systematic review aimed to synthesize preclinical findings on the effects of EE on autophagy markers in rodent models subjected to diverse adverse conditions. A literature search across PubMed, Scopus, ScienceDirect, and embase yielded eight eligible studies meeting inclusion criteria. EE was found to be generally associated with upregulation of key autophagic markers such as Beclin-1, LC3-II/LC3-I ratio, cathepsins, p62, p-TFEB, and LAMP-1 across brain regions including the cortex, hippocampus, and penumbral area. However, reductions in some markers were also observed, indicating that the modulatory effects of EE are context-dependent and may vary with disease model, brain region, or EE protocol duration. These findings suggest that EE holds promise as an adjunctive strategy to modulate autophagy and mitigate neurodegeneration, though heterogeneity in study design and outcomes warrants caution during interpretation. Further mechanistic and sex-specific studies are needed to clarify the therapeutic relevance of EE-induced autophagic modulation.
期刊介绍:
Frontiers in Cellular Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the cellular mechanisms underlying cell function in the nervous system across all species. Specialty Chief Editors Egidio D‘Angelo at the University of Pavia and Christian Hansel at the University of Chicago are supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.