{"title":"Research on a deep learning-based model for measurement of X-ray imaging parameters of atlantoaxial joint.","authors":"Yuhua Wu, Yuwen Zheng, Jinping Zhu, Xiaofei Chen, Fuwen Dong, Linyang He, Jinyang Zhu, Guohua Cheng, Ping Wang, Sheng Zhou","doi":"10.1007/s00586-025-09075-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To construct a deep learning-based SCNet model, in order to automatically measure X-ray imaging parameters related to atlantoaxial subluxation (AAS) in cervical open-mouth view radiographs, and the accuracy and reliability of the model were evaluated.</p><p><strong>Methods: </strong>A total of 1973 cervical open-mouth view radiographs were collected from picture archiving and communication system (PACS) of two hospitals(Hospitals A and B). Among them, 365 images of Hospital A were randomly selected as the internal test dataset for evaluating the model's performance, and the remaining 1364 images of Hospital A were used as the training dataset and validation dataset for constructing the model and tuning the model hyperparameters, respectively. The 244 images of Hospital B were used as an external test dataset to evaluate the robustness and generalizability of our model. The model identified and marked landmarks in the images for the parameters of the lateral atlanto-dental space (LADS), atlas lateral mass inclination (ALI), lateral mass width (LW), axis spinous process deviation distance (ASDD). The measured results of landmarks on the internal test dataset and external test dataset were compared with the mean values of manual measurement by three radiologists as the reference standard. Percentage of correct key-points (PCK), intra-class correlation coefficient (ICC), mean absolute error (MAE), Pearson correlation coefficient (r), mean square error (MSE), root mean square error (RMSE) and Bland-Altman plot were used to evaluate the performance of the SCNet model.</p><p><strong>Results: </strong>(1) Within the 2 mm distance threshold, the PCK of the SCNet model predicted landmarks in internal test dataset images was 98.6-99.7%, and the PCK in the external test dataset images was 98-100%. (2) In the internal test dataset, for the parameters LADS, ALI, LW, and ASDD, there were strong correlation and consistency between the SCNet model predictions and the manual measurements (ICC = 0.80-0.96, r = 0.86-0.96, MAE = 0.47-2.39 mm/°, MSE = 0.38-8.55 mm<sup>2</sup>/°<sup>2</sup>, RMSE = 0.62-2.92 mm/°). (3) The same four parameters also showed strong correlation and consistency between SCNet and manual measurements in the external test dataset (ICC = 0.81-0.91, r = 0.82-0.91, MAE = 0.46-2.29 mm/°, MSE = 0.29-8.23mm<sup>2</sup>/°<sup>2</sup>, RMSE = 0.54-2.87 mm/°).</p><p><strong>Conclusion: </strong>The SCNet model constructed based on deep learning algorithm in this study can accurately identify atlantoaxial vertebral landmarks in cervical open-mouth view radiographs and automatically measure the AAS-related imaging parameters. Furthermore, the independent external test set demonstrates that the model exhibits a certain degree of robustness and generalization capability under meet radiographic standards.</p>","PeriodicalId":12323,"journal":{"name":"European Spine Journal","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Spine Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00586-025-09075-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To construct a deep learning-based SCNet model, in order to automatically measure X-ray imaging parameters related to atlantoaxial subluxation (AAS) in cervical open-mouth view radiographs, and the accuracy and reliability of the model were evaluated.
Methods: A total of 1973 cervical open-mouth view radiographs were collected from picture archiving and communication system (PACS) of two hospitals(Hospitals A and B). Among them, 365 images of Hospital A were randomly selected as the internal test dataset for evaluating the model's performance, and the remaining 1364 images of Hospital A were used as the training dataset and validation dataset for constructing the model and tuning the model hyperparameters, respectively. The 244 images of Hospital B were used as an external test dataset to evaluate the robustness and generalizability of our model. The model identified and marked landmarks in the images for the parameters of the lateral atlanto-dental space (LADS), atlas lateral mass inclination (ALI), lateral mass width (LW), axis spinous process deviation distance (ASDD). The measured results of landmarks on the internal test dataset and external test dataset were compared with the mean values of manual measurement by three radiologists as the reference standard. Percentage of correct key-points (PCK), intra-class correlation coefficient (ICC), mean absolute error (MAE), Pearson correlation coefficient (r), mean square error (MSE), root mean square error (RMSE) and Bland-Altman plot were used to evaluate the performance of the SCNet model.
Results: (1) Within the 2 mm distance threshold, the PCK of the SCNet model predicted landmarks in internal test dataset images was 98.6-99.7%, and the PCK in the external test dataset images was 98-100%. (2) In the internal test dataset, for the parameters LADS, ALI, LW, and ASDD, there were strong correlation and consistency between the SCNet model predictions and the manual measurements (ICC = 0.80-0.96, r = 0.86-0.96, MAE = 0.47-2.39 mm/°, MSE = 0.38-8.55 mm2/°2, RMSE = 0.62-2.92 mm/°). (3) The same four parameters also showed strong correlation and consistency between SCNet and manual measurements in the external test dataset (ICC = 0.81-0.91, r = 0.82-0.91, MAE = 0.46-2.29 mm/°, MSE = 0.29-8.23mm2/°2, RMSE = 0.54-2.87 mm/°).
Conclusion: The SCNet model constructed based on deep learning algorithm in this study can accurately identify atlantoaxial vertebral landmarks in cervical open-mouth view radiographs and automatically measure the AAS-related imaging parameters. Furthermore, the independent external test set demonstrates that the model exhibits a certain degree of robustness and generalization capability under meet radiographic standards.
期刊介绍:
"European Spine Journal" is a publication founded in response to the increasing trend toward specialization in spinal surgery and spinal pathology in general. The Journal is devoted to all spine related disciplines, including functional and surgical anatomy of the spine, biomechanics and pathophysiology, diagnostic procedures, and neurology, surgery and outcomes. The aim of "European Spine Journal" is to support the further development of highly innovative spine treatments including but not restricted to surgery and to provide an integrated and balanced view of diagnostic, research and treatment procedures as well as outcomes that will enhance effective collaboration among specialists worldwide. The “European Spine Journal” also participates in education by means of videos, interactive meetings and the endorsement of educative efforts.
Official publication of EUROSPINE, The Spine Society of Europe