Zhiyang Hu, Linqiang Pan, Daijun Zhang, Yannan Bin, Yansen Su
{"title":"AEPMA: peptide-microbe association prediction based on autoevolutionary heterogeneous graph learning.","authors":"Zhiyang Hu, Linqiang Pan, Daijun Zhang, Yannan Bin, Yansen Su","doi":"10.1093/bib/bbaf334","DOIUrl":null,"url":null,"abstract":"<p><p>The inappropriate use of antibiotics has precipitated the emergence of multidrug-resistant bacteria, prompting significant interest in antimicrobial peptides (AMPs) as potential alternatives to traditional antibiotics. Given the prohibitive costs and time-consuming nature of biological experiments, computational methods provide an efficient alternative for the development of AMP-based drugs. However, existing computational studies primarily focus on identifying AMPs with antimicrobial activity, lacking a targeted identification of AMPs against specific microbial species. To address this gap, we propose a peptide-microbe association (PMA) prediction framework, termed AEPMA, which is constructed based on an autoevolutionary heterogeneous graph. Within AEPMA, we construct an innovative peptide-microbe-disease network (PMDHAN). Furthermore, we design an autoevolutionary information aggregation mechanism that facilitates the representation learning of the heterogeneous graph. This model automatically aggregates semantic information within the heterogeneous network while thoroughly accounting for the spatiotemporal dependencies and heterogeneous interactions in the PMDHAN. Experiments conducted on one peptide-microbe and three drug-microbe association datasets demonstrate that the performance of AEPMA outperforms five state-of-the-art methods, demonstrating its robust modeling capability and exceptional generalization ability. In addition, this study identifies a novel anti-Staphylococcus aureus peptide and an anti-Escherichia coli peptide, thereby contributing valuable information for the development of antimicrobial drugs and strategies for mitigating antibiotic resistance.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12240738/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf334","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The inappropriate use of antibiotics has precipitated the emergence of multidrug-resistant bacteria, prompting significant interest in antimicrobial peptides (AMPs) as potential alternatives to traditional antibiotics. Given the prohibitive costs and time-consuming nature of biological experiments, computational methods provide an efficient alternative for the development of AMP-based drugs. However, existing computational studies primarily focus on identifying AMPs with antimicrobial activity, lacking a targeted identification of AMPs against specific microbial species. To address this gap, we propose a peptide-microbe association (PMA) prediction framework, termed AEPMA, which is constructed based on an autoevolutionary heterogeneous graph. Within AEPMA, we construct an innovative peptide-microbe-disease network (PMDHAN). Furthermore, we design an autoevolutionary information aggregation mechanism that facilitates the representation learning of the heterogeneous graph. This model automatically aggregates semantic information within the heterogeneous network while thoroughly accounting for the spatiotemporal dependencies and heterogeneous interactions in the PMDHAN. Experiments conducted on one peptide-microbe and three drug-microbe association datasets demonstrate that the performance of AEPMA outperforms five state-of-the-art methods, demonstrating its robust modeling capability and exceptional generalization ability. In addition, this study identifies a novel anti-Staphylococcus aureus peptide and an anti-Escherichia coli peptide, thereby contributing valuable information for the development of antimicrobial drugs and strategies for mitigating antibiotic resistance.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.