{"title":"Mitochondrial Ucp4 Ameliorates Motor Disorders by Protecting Cerebellar Purkinje Cells from Oxidative Stress in Intermittent Hypobaric Hypoxia Mice.","authors":"Fei-Fei Wu, Bo-Zhi Liu, Rui-Qing Wang, Yun-Qiang Huang, Hui Liu, Zi-Wei Ni, Bo-Yang Li, Yu-Ze Sun, Yan-Ling Yang, Ya-Yun Wang","doi":"10.1089/ars.2024.0853","DOIUrl":null,"url":null,"abstract":"<p><p>Acute altitude hypoxia is a syndrome that manifests at elevations exceeding 2500 m, posing significant health challenges to individuals who travel or work at high altitudes. Uncoupling proteins are integral proteins located within the mitochondrial inner membrane, playing a crucial role in modulating proton leakage across the mitochondrial membrane. This study investigates the potential role of uncoupling protein 4 (Ucp4) overexpression in an intermittent hypobaric hypoxia (IHH) model and its underlying mechanisms in the cerebellar dyskinesia phenotype. An IHH model was developed using a low-pressure hypoxic chamber, exposing mice to 16 h of hypoxia daily for 5 days. Three mouse strains were used: C57BL/6J, Pcp2<sup>Cre</sup>; Ucp4<sup>fl/fl</sup>, and Pcp2<sup>Cre</sup>; Mito-GFP. Behavioral tests, including rotarod, open field, balance beam, and Morris water maze, were conducted. Ucp4-overexpressing virus was administered to cerebellar lobes 4/5. Mitochondrial morphology was assessed <i>via</i> transmission electron microscopy, 3D reconstruction, and network analysis, while function was evaluated through reactive oxygen species, mitochondrial membrane potential (MMP), glutathione/glutathione disulfide ratio, adenosine triphosphate levels, qPCR, and Western blotting. Results showed that IHH induces hypoactivity without affecting spatial cognition. IHH-induced hypoactivity is linked to Ucp4 upregulation and increased mitochondrial fragmentation in Purkinje cells (PCs), though overall mitochondrial dynamics remain balanced. Ucp4 deficiency exacerbates IHH-induced hypoactivity and mitochondrial fragmentation. Conversely, Ucp4 overexpression in PCs significantly alleviates these effects. Mechanistically, <i>Ucp4</i> protects PCs by stabilizing MMP and regulating oxidative stress, maintaining mitochondrial integrity. This study reveals that <i>Ucp4</i> protects cerebellar PCs from oxidative stress in IHH, improving motor function and identifying <i>Ucp4</i> as a potential therapeutic target for intermittent high-altitude syndrome. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2024.0853","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute altitude hypoxia is a syndrome that manifests at elevations exceeding 2500 m, posing significant health challenges to individuals who travel or work at high altitudes. Uncoupling proteins are integral proteins located within the mitochondrial inner membrane, playing a crucial role in modulating proton leakage across the mitochondrial membrane. This study investigates the potential role of uncoupling protein 4 (Ucp4) overexpression in an intermittent hypobaric hypoxia (IHH) model and its underlying mechanisms in the cerebellar dyskinesia phenotype. An IHH model was developed using a low-pressure hypoxic chamber, exposing mice to 16 h of hypoxia daily for 5 days. Three mouse strains were used: C57BL/6J, Pcp2Cre; Ucp4fl/fl, and Pcp2Cre; Mito-GFP. Behavioral tests, including rotarod, open field, balance beam, and Morris water maze, were conducted. Ucp4-overexpressing virus was administered to cerebellar lobes 4/5. Mitochondrial morphology was assessed via transmission electron microscopy, 3D reconstruction, and network analysis, while function was evaluated through reactive oxygen species, mitochondrial membrane potential (MMP), glutathione/glutathione disulfide ratio, adenosine triphosphate levels, qPCR, and Western blotting. Results showed that IHH induces hypoactivity without affecting spatial cognition. IHH-induced hypoactivity is linked to Ucp4 upregulation and increased mitochondrial fragmentation in Purkinje cells (PCs), though overall mitochondrial dynamics remain balanced. Ucp4 deficiency exacerbates IHH-induced hypoactivity and mitochondrial fragmentation. Conversely, Ucp4 overexpression in PCs significantly alleviates these effects. Mechanistically, Ucp4 protects PCs by stabilizing MMP and regulating oxidative stress, maintaining mitochondrial integrity. This study reveals that Ucp4 protects cerebellar PCs from oxidative stress in IHH, improving motor function and identifying Ucp4 as a potential therapeutic target for intermittent high-altitude syndrome. Antioxid. Redox Signal. 00, 000-000.
期刊介绍:
Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas.
ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes.
ARS coverage includes:
-ROS/RNS as messengers
-Gaseous signal transducers
-Hypoxia and tissue oxygenation
-microRNA
-Prokaryotic systems
-Lessons from plant biology