Rıza Özçelik, Helena Brinkmann, Emanuele Criscuolo, Francesca Grisoni
{"title":"Generative Deep Learning for de Novo Drug Design─A Chemical Space Odyssey.","authors":"Rıza Özçelik, Helena Brinkmann, Emanuele Criscuolo, Francesca Grisoni","doi":"10.1021/acs.jcim.5c00641","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, generative deep learning has emerged as a transformative approach in drug design, promising to explore the vast chemical space and generate novel molecules with desired biological properties. This perspective examines the challenges and opportunities of applying generative models to drug discovery, focusing on the intricate tasks related to small molecule generation, evaluation, and prioritization. Central to this process is navigating conflicting information from diverse sources─balancing chemical diversity, synthesizability, and bioactivity. We discuss the current state of generative methods, their optimization, and the critical need for robust evaluation protocols. By mapping this evolving landscape, we outline key building blocks, inherent dilemmas, and future directions in the journey to fully harness generative deep learning in the \"chemical odyssey\" of drug design.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00641","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, generative deep learning has emerged as a transformative approach in drug design, promising to explore the vast chemical space and generate novel molecules with desired biological properties. This perspective examines the challenges and opportunities of applying generative models to drug discovery, focusing on the intricate tasks related to small molecule generation, evaluation, and prioritization. Central to this process is navigating conflicting information from diverse sources─balancing chemical diversity, synthesizability, and bioactivity. We discuss the current state of generative methods, their optimization, and the critical need for robust evaluation protocols. By mapping this evolving landscape, we outline key building blocks, inherent dilemmas, and future directions in the journey to fully harness generative deep learning in the "chemical odyssey" of drug design.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.