{"title":"Collagen Biosynthesis and Its Molecular Ensemble: What Remains Unexplored.","authors":"Yoshihiro Ishikawa","doi":"10.1021/acs.biochem.5c00261","DOIUrl":null,"url":null,"abstract":"<p><p>Collagen embodies an intriguing paradox in protein biology. Despite being one of the most abundant protein superfamilies in vertebrates and having a seemingly simple structural organization, its biosynthesis is anything but straightforward. This apparent simplicity masks a complex and often contradictory biosynthetic landscape that poses significant challenges, particularly for newcomers to the field. Rather than following a linear or uniform pathway, collagen biosynthesis involves a coordinated series of tightly regulated steps, cotranslational post-translational modifications (PTMs), chain selection and registration, triple helix formation, and secretion, orchestrated by a specialized machinery, collectively termed the collagen molecular ensemble. This ensemble must overcome unconventional paradigms in protein biogenesis, rife with exceptions and unresolved questions. In this perspective, I examine underexplored aspects of the collagen biosynthetic machinery, spotlighting challenges in decoding the regulatory logic of PTMs, the spatial dynamics of trimer assembly, the functional consequences of chain registration, and the type-specific routes of secretion. By charting these uncertainties, I aim to challenge prevailing assumptions and invite interdisciplinary insight to help unravel the remaining mysteries of collagen biosynthesis.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.5c00261","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Collagen embodies an intriguing paradox in protein biology. Despite being one of the most abundant protein superfamilies in vertebrates and having a seemingly simple structural organization, its biosynthesis is anything but straightforward. This apparent simplicity masks a complex and often contradictory biosynthetic landscape that poses significant challenges, particularly for newcomers to the field. Rather than following a linear or uniform pathway, collagen biosynthesis involves a coordinated series of tightly regulated steps, cotranslational post-translational modifications (PTMs), chain selection and registration, triple helix formation, and secretion, orchestrated by a specialized machinery, collectively termed the collagen molecular ensemble. This ensemble must overcome unconventional paradigms in protein biogenesis, rife with exceptions and unresolved questions. In this perspective, I examine underexplored aspects of the collagen biosynthetic machinery, spotlighting challenges in decoding the regulatory logic of PTMs, the spatial dynamics of trimer assembly, the functional consequences of chain registration, and the type-specific routes of secretion. By charting these uncertainties, I aim to challenge prevailing assumptions and invite interdisciplinary insight to help unravel the remaining mysteries of collagen biosynthesis.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.