Acute Exposure of Veterinary Antibiotic Tilmicosin Leads to Idiopathic Scoliosis-Like Vertebral Malformation Development Through Regulating PI3K-Akt Pathway in Zebrafish
{"title":"Acute Exposure of Veterinary Antibiotic Tilmicosin Leads to Idiopathic Scoliosis-Like Vertebral Malformation Development Through Regulating PI3K-Akt Pathway in Zebrafish","authors":"Xianbin Zeng, Zhongxiao Cong, Meng Xu, Yujie Ju, Yong Huang, Mingkai Zuo, Bo Cheng, Guiyou Tian, Xiaoping Xiao, Danmei Zhao, Wei Yuan, Huiqiang Lu, Yiyue Zhang, Yan Zhao","doi":"10.1096/fj.202403204RR","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The widespread use of veterinary antibiotics in animal husbandry, such as tilmicosin (TIL), poses potential threats to environment pollution and human health. In this study, we conducted acute TIL exposure experiment using zebrafish model to explore the toxicological effects. In the concentration range of 20–80 mg/L, TIL did not affect zebrafish body length development but induced idiopathic scoliosis (IS)-like symptoms accompanied by impaired mobility. IS predominantly occurs in adolescents, while the etiology remains unclear. Further studies showed that the combination of quercetin and luteolin effectively alleviated TIL-induced spinal curvature and motor suppression. To explore the underlying mechanism, we performed network pharmacology analysis and enriched the PI3K-Akt pathway. We validated that the expression of key target genes in the PI3K-Akt pathway were significantly activated after TIL exposure, while quercetin and luteolin treatment effectively inhibited the PI3K-Akt pathway activation. Further experiments revealed that TIL exposure decreased brain neural cell apoptosis, thereby causing an increase in neurocytes, interfering with motor ability, and promoting IS-like vertebral malformations, which were especially noticeable during movement. This study expands our understanding that TIL exposure may be a predisposing factor for IS occurrence and progression, while the combination of quercetin and luteolin combination could protect against IS-like symptom by regulating PI3K-Akt pathway.</p>\n </div>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 14","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202403204RR","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The widespread use of veterinary antibiotics in animal husbandry, such as tilmicosin (TIL), poses potential threats to environment pollution and human health. In this study, we conducted acute TIL exposure experiment using zebrafish model to explore the toxicological effects. In the concentration range of 20–80 mg/L, TIL did not affect zebrafish body length development but induced idiopathic scoliosis (IS)-like symptoms accompanied by impaired mobility. IS predominantly occurs in adolescents, while the etiology remains unclear. Further studies showed that the combination of quercetin and luteolin effectively alleviated TIL-induced spinal curvature and motor suppression. To explore the underlying mechanism, we performed network pharmacology analysis and enriched the PI3K-Akt pathway. We validated that the expression of key target genes in the PI3K-Akt pathway were significantly activated after TIL exposure, while quercetin and luteolin treatment effectively inhibited the PI3K-Akt pathway activation. Further experiments revealed that TIL exposure decreased brain neural cell apoptosis, thereby causing an increase in neurocytes, interfering with motor ability, and promoting IS-like vertebral malformations, which were especially noticeable during movement. This study expands our understanding that TIL exposure may be a predisposing factor for IS occurrence and progression, while the combination of quercetin and luteolin combination could protect against IS-like symptom by regulating PI3K-Akt pathway.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.