{"title":"Federated Multi-View Multi-Label Classification","authors":"Hongdao Meng;Yongjian Deng;Qiyu Zhong;Yipeng Wang;Zhen Yang;Gengyu Lyu","doi":"10.1109/TBDATA.2024.3522812","DOIUrl":null,"url":null,"abstract":"Multi-view multi-label classification is a crucial machine learning paradigm aimed at building robust multi-label predictors by integrating heterogeneous features from various sources while addressing multiple correlated labels. However, in real-world applications, concerns over data confidentiality and security often prevent data exchange or fusion across different sources, leading to the challenging issue of data islands. To tackle this problem, we propose a general federated multi-view multi-label classification method, FMVML, which integrates a novel multi-view multi-label classification technique into a federated learning framework. This approach enables cross-view feature fusion and multi-label semantic classification while preserving the data privacy of each independent source. Within this federated framework, we first extract view-specific information from each individual client to capture unique characteristics and then consolidate consensus information from different views on the global server to represent shared features. Unlike previous methods, our approach enhances cross-view fusion and semantic expression by jointly capturing both feature and semantic aspects of specificity and commonality. The final label predictions are generated by combining the view-specific predictions from individual clients and the consensus predictions from the global server. Extensive experiments across various applications demonstrate that FMVML fully leverages multi-view data in a privacy-preserving manner and consistently outperforms state-of-the-art methods.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 4","pages":"2072-2084"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816109/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-view multi-label classification is a crucial machine learning paradigm aimed at building robust multi-label predictors by integrating heterogeneous features from various sources while addressing multiple correlated labels. However, in real-world applications, concerns over data confidentiality and security often prevent data exchange or fusion across different sources, leading to the challenging issue of data islands. To tackle this problem, we propose a general federated multi-view multi-label classification method, FMVML, which integrates a novel multi-view multi-label classification technique into a federated learning framework. This approach enables cross-view feature fusion and multi-label semantic classification while preserving the data privacy of each independent source. Within this federated framework, we first extract view-specific information from each individual client to capture unique characteristics and then consolidate consensus information from different views on the global server to represent shared features. Unlike previous methods, our approach enhances cross-view fusion and semantic expression by jointly capturing both feature and semantic aspects of specificity and commonality. The final label predictions are generated by combining the view-specific predictions from individual clients and the consensus predictions from the global server. Extensive experiments across various applications demonstrate that FMVML fully leverages multi-view data in a privacy-preserving manner and consistently outperforms state-of-the-art methods.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.