{"title":"Principle and Implementation of Temperature-Adaptive Active Gate Driver for SiC MOSFET Module","authors":"Menghao Li;Hao Li;Jie Ren;Sideng Hu;Xiangning He","doi":"10.23919/CJEE.2025.000140","DOIUrl":null,"url":null,"abstract":"By integrating a temperature-adaptive function, an active gate driver (AGD) enhances the switching performance of silicon carbide (SiC) MOSFETs under varying temperature conditions. However, the lack of analytical expressions describing the coupling between AGD parameters and temperature variation limits the broader application of this method, particularly in SiC modules that exhibit complicated device transient behaviors. To address this challenge, a mathematical model of the transient behavior of an SiC module is developed to investigate the relationship among AGD parameters, junction temperature, and switching performance. The analysis reveals that the impact of temperature on switching performance is directly linked to the duration of each gate resistance. Accordingly, a temperature-adaptive AGD for SiC MOSFET modules is proposed. Online junction temperature monitoring is achieved using turn-on delay detection, and the duration of each gate's driving resistance is dynamically adjusted. The proposed temperature-adaptive AGD is validated experimentally using a commercial 1.2 kV/560 A SiC MOSFET at 600 V/200 A. Experimental results across a temperature range of 20°C to 100°C demonstrate that electrical stress variation remains within 15%, while loss variation does not exceed 10%.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":"11 2","pages":"216-225"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11077900","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electrical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/11077900/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
By integrating a temperature-adaptive function, an active gate driver (AGD) enhances the switching performance of silicon carbide (SiC) MOSFETs under varying temperature conditions. However, the lack of analytical expressions describing the coupling between AGD parameters and temperature variation limits the broader application of this method, particularly in SiC modules that exhibit complicated device transient behaviors. To address this challenge, a mathematical model of the transient behavior of an SiC module is developed to investigate the relationship among AGD parameters, junction temperature, and switching performance. The analysis reveals that the impact of temperature on switching performance is directly linked to the duration of each gate resistance. Accordingly, a temperature-adaptive AGD for SiC MOSFET modules is proposed. Online junction temperature monitoring is achieved using turn-on delay detection, and the duration of each gate's driving resistance is dynamically adjusted. The proposed temperature-adaptive AGD is validated experimentally using a commercial 1.2 kV/560 A SiC MOSFET at 600 V/200 A. Experimental results across a temperature range of 20°C to 100°C demonstrate that electrical stress variation remains within 15%, while loss variation does not exceed 10%.