Real-World Smartphone Data Predicts Mood After Ischemic Stroke and Transient Ischemic Attack Symptoms and May Constitute Digital Endpoints: A Proof-of-Concept Study
Stephanie Zawada PhD, MS , Jestrii Acosta MS , Caden Collins BA , Oana Dumitrascu MD, MS , Ehab Harahsheh MBBS , Clinton Hagen MS , Ali Ganjizadeh MD , Elham Mahmoudi MD , Bradley Erickson MD, PhD , Bart Demaerschalk MD, MSc
{"title":"Real-World Smartphone Data Predicts Mood After Ischemic Stroke and Transient Ischemic Attack Symptoms and May Constitute Digital Endpoints: A Proof-of-Concept Study","authors":"Stephanie Zawada PhD, MS , Jestrii Acosta MS , Caden Collins BA , Oana Dumitrascu MD, MS , Ehab Harahsheh MBBS , Clinton Hagen MS , Ali Ganjizadeh MD , Elham Mahmoudi MD , Bradley Erickson MD, PhD , Bart Demaerschalk MD, MSc","doi":"10.1016/j.mcpdig.2025.100240","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To assess the feasibility of using smartphones to longitudinally collect objective behavior measures and establish the extent to which they can predict gold-standard depression severity in patients with ischemic stroke and transient ischemic attack (IS/TIA) symptoms.</div></div><div><h3>Patients and Methods</h3><div>Participants with IS/TIA symptoms were monitored in real-world settings using the Beiwe application for 8 or more weeks during March 1, 2024 to November 15, 2024. Depression symptoms were tracked via weekly Patient Health Questionnaire (PHQ)-8 surveys, monthly personnel-administered Montgomery–Åsberg Depression Rating Scale (MADRS) assessments, and weekly averages of smartphone sensor measures. Repeated measures correlation established associations between PHQ-8 scores and objective behavior measures. To investigate how closely smartphone data predicted MADRS scores, linear mixed models were used.</div></div><div><h3>Results</h3><div>Among enrolled participants (n=54), 35 completed the study (64.8%). PHQ-8 scores were associated with distance from home (<em>r</em>=0.173), time spent at home (<em>r</em>=−0.147) and PHQ-8 administration duration (<em>r</em>=0.151). Using demographic data and the most recent PHQ-8 scores, average root-mean-squared error for depression severity prediction across models was 1.64 with only PHQ-8 scores, 1.49 also including accelerometer and GPS data, and 1.36 also including PHQ-8 administration duration.</div></div><div><h3>Conclusion</h3><div>Smartphone sensors captured objective behavior measures in patients with IS/TIA. In predictive models, the accuracy of depression severity scores improved as measures from additional smartphone sensors were included. Future research should validate this decentralized, exploratory approach in a larger cohort. Our work is a step toward showing that real-world monitoring with active and passive data may triage patients with IS/TIA for efficient depression screening and provide digital mobility and response time endpoints.</div></div>","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"3 3","pages":"Article 100240"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mayo Clinic Proceedings. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949761225000471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
To assess the feasibility of using smartphones to longitudinally collect objective behavior measures and establish the extent to which they can predict gold-standard depression severity in patients with ischemic stroke and transient ischemic attack (IS/TIA) symptoms.
Patients and Methods
Participants with IS/TIA symptoms were monitored in real-world settings using the Beiwe application for 8 or more weeks during March 1, 2024 to November 15, 2024. Depression symptoms were tracked via weekly Patient Health Questionnaire (PHQ)-8 surveys, monthly personnel-administered Montgomery–Åsberg Depression Rating Scale (MADRS) assessments, and weekly averages of smartphone sensor measures. Repeated measures correlation established associations between PHQ-8 scores and objective behavior measures. To investigate how closely smartphone data predicted MADRS scores, linear mixed models were used.
Results
Among enrolled participants (n=54), 35 completed the study (64.8%). PHQ-8 scores were associated with distance from home (r=0.173), time spent at home (r=−0.147) and PHQ-8 administration duration (r=0.151). Using demographic data and the most recent PHQ-8 scores, average root-mean-squared error for depression severity prediction across models was 1.64 with only PHQ-8 scores, 1.49 also including accelerometer and GPS data, and 1.36 also including PHQ-8 administration duration.
Conclusion
Smartphone sensors captured objective behavior measures in patients with IS/TIA. In predictive models, the accuracy of depression severity scores improved as measures from additional smartphone sensors were included. Future research should validate this decentralized, exploratory approach in a larger cohort. Our work is a step toward showing that real-world monitoring with active and passive data may triage patients with IS/TIA for efficient depression screening and provide digital mobility and response time endpoints.