{"title":"Partial permutations comparison, maintenance and applications","authors":"Avivit Levy , Ely Porat , B. Riva Shalom","doi":"10.1016/j.tcs.2025.115433","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies <em>partial permutations</em> and their use in algorithmic tasks. A <em>partial permutation</em> over Σ is a bijection <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>p</mi><mi>a</mi><mi>r</mi></mrow></msub><mo>:</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>↦</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> mapping a subset <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊂</mo><mi>Σ</mi></math></span> to a subset <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊂</mo><mi>Σ</mi></math></span>, where <span><math><mo>|</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo><mo>=</mo><mo>|</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo></math></span> (<span><math><mo>|</mo><mi>Σ</mi><mo>|</mo></math></span> denotes the size of a set Σ). Intuitively, two partial permutations <em>agree</em> if their mapping pairs do not form <em>conflicts</em>. We formally define this notion enabling a consistent as well as informatively rich comparison between partial permutations. We define the <em>Partial Permutations Agreement</em> problem (PPA), as follows. Given two sets <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of partial permutations over alphabet Σ, each of size <em>n</em>, output a pair (<span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> <em>agrees</em> with <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>, if exists. We study the existence of a data structure for efficiently maintaining a dynamic set of partial permutations enabling to retrieve agreement of partial permutations giving both negative and positive results. As applications we point out: (1) fruitful/futile methods for efficient genes sequences comparison in database, (2) an automatic color transformation data augmentation technique for image processing through neural networks, (3) negatively answer a recently posed open question on the strict parameterized dictionary matching with one gap (PDMOG) problem over general dictionary alphabets.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1054 ","pages":"Article 115433"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525003718","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies partial permutations and their use in algorithmic tasks. A partial permutation over Σ is a bijection mapping a subset to a subset , where ( denotes the size of a set Σ). Intuitively, two partial permutations agree if their mapping pairs do not form conflicts. We formally define this notion enabling a consistent as well as informatively rich comparison between partial permutations. We define the Partial Permutations Agreement problem (PPA), as follows. Given two sets of partial permutations over alphabet Σ, each of size n, output a pair (, where and agrees with , if exists. We study the existence of a data structure for efficiently maintaining a dynamic set of partial permutations enabling to retrieve agreement of partial permutations giving both negative and positive results. As applications we point out: (1) fruitful/futile methods for efficient genes sequences comparison in database, (2) an automatic color transformation data augmentation technique for image processing through neural networks, (3) negatively answer a recently posed open question on the strict parameterized dictionary matching with one gap (PDMOG) problem over general dictionary alphabets.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.