Algorithms for Shortest Path Tour Problem

IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Yucen Gao , Zhuoran Li , Jingyu He , Jun Fang , Hui Gao , Xiaofeng Gao , Guihai Chen
{"title":"Algorithms for Shortest Path Tour Problem","authors":"Yucen Gao ,&nbsp;Zhuoran Li ,&nbsp;Jingyu He ,&nbsp;Jun Fang ,&nbsp;Hui Gao ,&nbsp;Xiaofeng Gao ,&nbsp;Guihai Chen","doi":"10.1016/j.tcs.2025.115428","DOIUrl":null,"url":null,"abstract":"<div><div>Carpooling route planning becomes an important problem with the growth of low-carbon traffic systems. When each passenger has multiple potential pick-up/drop-off locations, the problem will be more challenging. In the paper, we discussed a simplified carpooling route planning problem, namely the Shortest Path Tour Problem (SPTP), whose aim is to find a single-origin single-destination shortest path through an ordered sequence of disjoint node subsets. We propose Stage Dijkstra and Global Dijkstra algorithms to find the optimal shortest path, with the time complexity of <span><math><mi>O</mi><mo>(</mo><mi>l</mi><mo>(</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> and <span><math><mi>O</mi><mo>(</mo><mi>l</mi><mo>(</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>l</mi><mi>n</mi><mo>)</mo><mo>)</mo></math></span> respectively, where <em>l</em> represents the number of node subsets. To the best of our knowledge, <span><math><mi>O</mi><mo>(</mo><mi>l</mi><mo>(</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> is the best time complexity of the exact algorithms for SPTP. Besides, the Stage Dijkstra and Global Dijkstra algorithms both have the linear space complexity, which is highly suitable for resource-constrained environments. Experiments conducted on large-scale road networks and synthetic datasets demonstrate the effectiveness and efficiency of our proposed algorithms in terms of running time and memory consumption.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1054 ","pages":"Article 115428"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525003664","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Carpooling route planning becomes an important problem with the growth of low-carbon traffic systems. When each passenger has multiple potential pick-up/drop-off locations, the problem will be more challenging. In the paper, we discussed a simplified carpooling route planning problem, namely the Shortest Path Tour Problem (SPTP), whose aim is to find a single-origin single-destination shortest path through an ordered sequence of disjoint node subsets. We propose Stage Dijkstra and Global Dijkstra algorithms to find the optimal shortest path, with the time complexity of O(l(n+m)logn) and O(l(n+m)log(ln)) respectively, where l represents the number of node subsets. To the best of our knowledge, O(l(n+m)logn) is the best time complexity of the exact algorithms for SPTP. Besides, the Stage Dijkstra and Global Dijkstra algorithms both have the linear space complexity, which is highly suitable for resource-constrained environments. Experiments conducted on large-scale road networks and synthetic datasets demonstrate the effectiveness and efficiency of our proposed algorithms in terms of running time and memory consumption.
最短路径漫游问题的算法
随着低碳交通系统的发展,拼车路线规划成为一个重要的问题。当每个乘客都有多个可能的上下车地点时,问题将更具挑战性。本文讨论了一个简化的拼车路径规划问题,即最短路径漫游问题(SPTP),其目的是通过不相交的节点子集的有序序列找到一条单起点单目的地的最短路径。我们提出了Stage Dijkstra和Global Dijkstra算法来寻找最优最短路径,时间复杂度分别为O(l(n+m)log (n))和O(l(n+m)log (ln)),其中l表示节点子集的数量。据我们所知,O(l(n+m)log (n))是SPTP精确算法的最佳时间复杂度。此外,Stage Dijkstra算法和Global Dijkstra算法都具有线性空间复杂度,非常适合于资源受限的环境。在大规模道路网络和合成数据集上进行的实验证明了我们提出的算法在运行时间和内存消耗方面的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信