{"title":"MaxSwap-Enhanced Knowledge Consistency Learning for long-tailed recognition","authors":"Shengnan Fan, Zhilei Chai, Zhijun Fang, Yuying Pan, Hui Shen, Xiangyu Cheng, Qin Wu","doi":"10.1016/j.imavis.2025.105643","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning has made significant progress in image classification. However, real-world datasets often exhibit a long-tailed distribution, where a few head classes dominate while many tail classes have very few samples. This imbalance leads to poor performance on tail classes. To address this issue, we propose MaxSwap-Enhanced Knowledge Consistency Learning which includes two core components: Knowledge Consistency Learning and MaxSwap for Confusion Suppression. Knowledge Consistency Learning leverages the outputs from different augmented views as soft labels to capture inter-class similarities and introduces a consistency constraint to enforce output consistency across different perturbations, which enables tail classes to effectively learn from head classes with similar features. To alleviate the bias towards head classes, we further propose a MaxSwap for Confusion Suppression to adaptively adjust the soft labels when the model makes incorrect predictions which mitigates overconfidence in incorrect predictions. Experimental results demonstrate that our method achieves significant improvements on long-tailed datasets such as CIFAR10-LT, CIFAR100-LT, ImageNet-LT, and Places-LT, which validates the effectiveness of our approach.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"161 ","pages":"Article 105643"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625002318","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning has made significant progress in image classification. However, real-world datasets often exhibit a long-tailed distribution, where a few head classes dominate while many tail classes have very few samples. This imbalance leads to poor performance on tail classes. To address this issue, we propose MaxSwap-Enhanced Knowledge Consistency Learning which includes two core components: Knowledge Consistency Learning and MaxSwap for Confusion Suppression. Knowledge Consistency Learning leverages the outputs from different augmented views as soft labels to capture inter-class similarities and introduces a consistency constraint to enforce output consistency across different perturbations, which enables tail classes to effectively learn from head classes with similar features. To alleviate the bias towards head classes, we further propose a MaxSwap for Confusion Suppression to adaptively adjust the soft labels when the model makes incorrect predictions which mitigates overconfidence in incorrect predictions. Experimental results demonstrate that our method achieves significant improvements on long-tailed datasets such as CIFAR10-LT, CIFAR100-LT, ImageNet-LT, and Places-LT, which validates the effectiveness of our approach.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.