{"title":"Graph neural networks embedded into Margules model for vapor–liquid equilibria prediction","authors":"Edgar Ivan Sanchez Medina , Kai Sundmacher","doi":"10.1016/j.fluid.2025.114520","DOIUrl":null,"url":null,"abstract":"<div><div>Predictive thermodynamic models are crucial for the early stages of product and process design. In this paper the performance of Graph Neural Networks (GNNs) embedded into a relatively simple excess Gibbs energy model, the extended Margules model, for predicting vapor–liquid equilibrium at low pressures (less than 5 bar) is analyzed. By comparing its performance against the established UNIFAC-Dortmund model it has been shown that GNNs embedded in Margules achieves an overall lower accuracy. However, higher accuracy is observed in the case of various types of binary mixtures. Moreover, since group contribution methods, like UNIFAC, are limited due to feasibility of molecular fragmentation or availability of parameters, the GNN in Margules model offers an alternative for VLE estimation. The findings establish a baseline for the predictive accuracy that simple excess Gibbs energy models combined with GNNs trained solely on infinite dilution data can achieve.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"599 ","pages":"Article 114520"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381225001906","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Predictive thermodynamic models are crucial for the early stages of product and process design. In this paper the performance of Graph Neural Networks (GNNs) embedded into a relatively simple excess Gibbs energy model, the extended Margules model, for predicting vapor–liquid equilibrium at low pressures (less than 5 bar) is analyzed. By comparing its performance against the established UNIFAC-Dortmund model it has been shown that GNNs embedded in Margules achieves an overall lower accuracy. However, higher accuracy is observed in the case of various types of binary mixtures. Moreover, since group contribution methods, like UNIFAC, are limited due to feasibility of molecular fragmentation or availability of parameters, the GNN in Margules model offers an alternative for VLE estimation. The findings establish a baseline for the predictive accuracy that simple excess Gibbs energy models combined with GNNs trained solely on infinite dilution data can achieve.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.