Eliza Gazaway , Rajan Kandel , Oliver C. Grant, Robert J. Woods
{"title":"Are N-linked glycans intrinsically disordered?","authors":"Eliza Gazaway , Rajan Kandel , Oliver C. Grant, Robert J. Woods","doi":"10.1016/j.sbi.2025.103118","DOIUrl":null,"url":null,"abstract":"<div><div>The covalent attachment of oligosaccharides to asparagine side chains on protein surfaces (<em>N-</em>linked glycosylation) is a ubiquitous modification that is critical to protein stability and function. Experimental 3D structures of glycoproteins in which the <em>N-</em>linked glycans are well resolved are rare due to both the presumed flexibility of the <em>N-</em>linked glycan and to glycan microheterogeneity. To surmount these limitations, computational modeling is often applied to glycoproteins, particularly to generate an ensemble of 3D shapes for the <em>N-</em>linked glycans. While the number of glycoprotein modelling tools continues to expand, the available experimental data against which the predictions can be validated remains extremely limited. Here, we present our current understanding of the dynamic properties of <em>N-</em>linked glycans, with a particular focus on features that impact their presentation (orientation) relative to the protein surface. Additionally, we review the limits of experimental and theoretical studies of glycoproteins, and ask the question, “Are <em>N-</em>linked glycans intrinsically disordered?”.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"93 ","pages":"Article 103118"},"PeriodicalIF":6.1000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25001368","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The covalent attachment of oligosaccharides to asparagine side chains on protein surfaces (N-linked glycosylation) is a ubiquitous modification that is critical to protein stability and function. Experimental 3D structures of glycoproteins in which the N-linked glycans are well resolved are rare due to both the presumed flexibility of the N-linked glycan and to glycan microheterogeneity. To surmount these limitations, computational modeling is often applied to glycoproteins, particularly to generate an ensemble of 3D shapes for the N-linked glycans. While the number of glycoprotein modelling tools continues to expand, the available experimental data against which the predictions can be validated remains extremely limited. Here, we present our current understanding of the dynamic properties of N-linked glycans, with a particular focus on features that impact their presentation (orientation) relative to the protein surface. Additionally, we review the limits of experimental and theoretical studies of glycoproteins, and ask the question, “Are N-linked glycans intrinsically disordered?”.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation