Segmenting cryo-electron tomography data: Extracting models from cellular landscapes

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Danielle A. Grotjahn
{"title":"Segmenting cryo-electron tomography data: Extracting models from cellular landscapes","authors":"Danielle A. Grotjahn","doi":"10.1016/j.sbi.2025.103114","DOIUrl":null,"url":null,"abstract":"<div><div>Cryo-electron tomography provides an unprecedented view of cellular architecture, yet extracting meaningful biological insights remains challenging. Segmentation is a crucial step in this process through its ability to identify structural relationships between subcellular components visible in cryo-electron tomography data. While segmentation pipelines were historically low throughput, recent advancements in deep learning have significantly improved their automation, accuracy, and scalability. This review explores how these innovations redefine best practices for segmentation and accelerate biological discovery. This article highlights the critical role of segmentation in unlocking the full potential of cryo-electron tomography—not only for resolving macromolecular structures but also for quantifying their impact on subcellular organization and function.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"93 ","pages":"Article 103114"},"PeriodicalIF":6.1000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25001320","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cryo-electron tomography provides an unprecedented view of cellular architecture, yet extracting meaningful biological insights remains challenging. Segmentation is a crucial step in this process through its ability to identify structural relationships between subcellular components visible in cryo-electron tomography data. While segmentation pipelines were historically low throughput, recent advancements in deep learning have significantly improved their automation, accuracy, and scalability. This review explores how these innovations redefine best practices for segmentation and accelerate biological discovery. This article highlights the critical role of segmentation in unlocking the full potential of cryo-electron tomography—not only for resolving macromolecular structures but also for quantifying their impact on subcellular organization and function.
分割低温电子断层扫描数据:从细胞景观中提取模型
低温电子断层扫描提供了前所未有的细胞结构视图,但提取有意义的生物学见解仍然具有挑战性。分割是这一过程中的关键一步,因为它能够识别亚细胞成分之间的结构关系,在低温电子断层扫描数据中可见。虽然分割管道的吞吐量历来较低,但深度学习的最新进展显著提高了其自动化、准确性和可扩展性。这篇综述探讨了这些创新如何重新定义分割的最佳实践并加速生物发现。本文强调了分割在释放低温电子层析成像的全部潜力方面的关键作用——不仅用于解析大分子结构,而且用于量化它们对亚细胞组织和功能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current opinion in structural biology
Current opinion in structural biology 生物-生化与分子生物学
CiteScore
12.20
自引率
2.90%
发文量
179
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In COSB, we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. [...] The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance. -Folding and Binding- Nucleic acids and their protein complexes- Macromolecular Machines- Theory and Simulation- Sequences and Topology- New constructs and expression of proteins- Membranes- Engineering and Design- Carbohydrate-protein interactions and glycosylation- Biophysical and molecular biological methods- Multi-protein assemblies in signalling- Catalysis and Regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信