Investigating the dissolution behavior and revealing the thermodynamic mechanism of Ethyl L-phenylalaninate hydrochloride in several neat and binary solvents
Pengshuai Zhang , Binbin Wu , Ranran Feng , Jiaxuan Xu , Jiaqi Li , Shuoye Yang , Peng Li
{"title":"Investigating the dissolution behavior and revealing the thermodynamic mechanism of Ethyl L-phenylalaninate hydrochloride in several neat and binary solvents","authors":"Pengshuai Zhang , Binbin Wu , Ranran Feng , Jiaxuan Xu , Jiaqi Li , Shuoye Yang , Peng Li","doi":"10.1016/j.fluid.2025.114524","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the solubility of ethyl l-phenylalaninate hydrochloride (H-Phe-OEt.HCl) in seven neat solvents (1-Propanol, 1,4-Dioxane, 2-Butoxyethanol, 2-Propoxyethanol, Isopropyl alcohol, 1-Butanol, THF) and two binary (2-Propoxyethanol + THF, 2-Butoxyethanol + 1-Propanol) solvent mixtures from 283.15 K to 323.15 K under atmospheric pressure. The solubility of H-Phe-OEt.HCl in the neat solvents was correlated by the NRTL, Buchowski-Ksiazczak λh, Margules, NRTL-SAC, Jouyban and van't Hoff model. For the binary solvent mixtures (2-Propoxyethanol + THF, 2-Butoxyethanol + 1-Propanol), the NRTL, van't Hoff, Jouyban-Acree van't Hoff and Ma model were employed to correlate the obtained solubility. Hansen solubility parameters (HSPs) was used to evaluate the dissolution trend of H-Phe-OEt.HCl in the selected solvents. In addition, the apparent thermodynamic parameters such as Δ<sub>sol</sub><em>H</em>° (apparent standard enthalpy change), Δ<sub>sol</sub><em>S</em>° (apparent standard entropy change) and Δ<sub>sol</sub><em>G</em>° (apparent standard Gibbs energy change) was calculated to evaluate the dissolution mechanism, all the positive values of Δ<sub>sol</sub><em>H</em>°, Δ<sub>sol</sub><em>S</em>° and Δ<sub>sol</sub><em>G</em>° illustrated that the dissolution of H-Phe-OEt.HCl was an endothermic and entropy-increase process. The current study could provide critical insights for optimizing industrial crystallization, purification, and separation processes of H-Phe-OEt.HCl.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"599 ","pages":"Article 114524"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381225001943","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the solubility of ethyl l-phenylalaninate hydrochloride (H-Phe-OEt.HCl) in seven neat solvents (1-Propanol, 1,4-Dioxane, 2-Butoxyethanol, 2-Propoxyethanol, Isopropyl alcohol, 1-Butanol, THF) and two binary (2-Propoxyethanol + THF, 2-Butoxyethanol + 1-Propanol) solvent mixtures from 283.15 K to 323.15 K under atmospheric pressure. The solubility of H-Phe-OEt.HCl in the neat solvents was correlated by the NRTL, Buchowski-Ksiazczak λh, Margules, NRTL-SAC, Jouyban and van't Hoff model. For the binary solvent mixtures (2-Propoxyethanol + THF, 2-Butoxyethanol + 1-Propanol), the NRTL, van't Hoff, Jouyban-Acree van't Hoff and Ma model were employed to correlate the obtained solubility. Hansen solubility parameters (HSPs) was used to evaluate the dissolution trend of H-Phe-OEt.HCl in the selected solvents. In addition, the apparent thermodynamic parameters such as ΔsolH° (apparent standard enthalpy change), ΔsolS° (apparent standard entropy change) and ΔsolG° (apparent standard Gibbs energy change) was calculated to evaluate the dissolution mechanism, all the positive values of ΔsolH°, ΔsolS° and ΔsolG° illustrated that the dissolution of H-Phe-OEt.HCl was an endothermic and entropy-increase process. The current study could provide critical insights for optimizing industrial crystallization, purification, and separation processes of H-Phe-OEt.HCl.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.