Ana Galan-Cobo, Natalie I. Vokes, Yu Qian, David Molkentine, Kavya Ramkumar, Alvaro G. Paula, Marlese Pisegna, Daniel J. McGrail, Alissa Poteete, Sungnam Cho, Minh Truong Do, Amirali Karimi, Yifan Kong, Anisha Solanki, Ankur Karmokar, Nicolas Floc’h, Adina Hughes, Rebecca Sargeant, Lucy Young, Li Shen, John V. Heymach
{"title":"KEAP1 and STK11/LKB1 alterations enhance vulnerability to ATR inhibition in KRAS mutant non-small cell lung cancer","authors":"Ana Galan-Cobo, Natalie I. Vokes, Yu Qian, David Molkentine, Kavya Ramkumar, Alvaro G. Paula, Marlese Pisegna, Daniel J. McGrail, Alissa Poteete, Sungnam Cho, Minh Truong Do, Amirali Karimi, Yifan Kong, Anisha Solanki, Ankur Karmokar, Nicolas Floc’h, Adina Hughes, Rebecca Sargeant, Lucy Young, Li Shen, John V. Heymach","doi":"10.1016/j.ccell.2025.06.011","DOIUrl":null,"url":null,"abstract":"<em>KRAS</em> mutations frequently co-occur with alterations in <em>STK11</em>/LKB1 and/or <em>KEAP1</em>, defining an aggressive subset of lung cancers resistant to immuno- and chemotherapy. While LKB1 loss is associated with vulnerability to DNA damage response-based therapies, the impact of <em>KEAP1</em> alterations remains unknown. We demonstrate that KEAP1-NRF2 pathway drives a compensatory modulation of ATR-CHK1 signaling, enhancing vulnerability to ATR inhibitors (ATRi), particularly in the setting of increased replication stress associated with LKB1 loss. ATRi shows enhanced anti-tumor activity in LKB1 and/or KEAP1-deficient non-small cell lung cancer (NSCLC) models and synergizes with gemcitabine. ATRi also enhances antitumor immunity and mitigates the immunosuppressed phenotype of LKB1/KEAP1-deficient tumors. In the HUDSON trial, LKB1/KEAP1-deficient NSCLC patients demonstrate enhanced benefits to the ATRi ceralasertib plus durvalumab. These findings suggest that alterations in the KEAP1-NRF2 pathway and/or LKB1 are associated with enhanced sensitivity to ATRi and could serve as biomarkers for predicting response to ATRi combination regimens.","PeriodicalId":9670,"journal":{"name":"Cancer Cell","volume":"35 1","pages":""},"PeriodicalIF":48.8000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ccell.2025.06.011","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
KRAS mutations frequently co-occur with alterations in STK11/LKB1 and/or KEAP1, defining an aggressive subset of lung cancers resistant to immuno- and chemotherapy. While LKB1 loss is associated with vulnerability to DNA damage response-based therapies, the impact of KEAP1 alterations remains unknown. We demonstrate that KEAP1-NRF2 pathway drives a compensatory modulation of ATR-CHK1 signaling, enhancing vulnerability to ATR inhibitors (ATRi), particularly in the setting of increased replication stress associated with LKB1 loss. ATRi shows enhanced anti-tumor activity in LKB1 and/or KEAP1-deficient non-small cell lung cancer (NSCLC) models and synergizes with gemcitabine. ATRi also enhances antitumor immunity and mitigates the immunosuppressed phenotype of LKB1/KEAP1-deficient tumors. In the HUDSON trial, LKB1/KEAP1-deficient NSCLC patients demonstrate enhanced benefits to the ATRi ceralasertib plus durvalumab. These findings suggest that alterations in the KEAP1-NRF2 pathway and/or LKB1 are associated with enhanced sensitivity to ATRi and could serve as biomarkers for predicting response to ATRi combination regimens.
期刊介绍:
Cancer Cell is a journal that focuses on promoting major advances in cancer research and oncology. The primary criteria for considering manuscripts are as follows:
Major advances: Manuscripts should provide significant advancements in answering important questions related to naturally occurring cancers.
Translational research: The journal welcomes translational research, which involves the application of basic scientific findings to human health and clinical practice.
Clinical investigations: Cancer Cell is interested in publishing clinical investigations that contribute to establishing new paradigms in the treatment, diagnosis, or prevention of cancers.
Insights into cancer biology: The journal values clinical investigations that provide important insights into cancer biology beyond what has been revealed by preclinical studies.
Mechanism-based proof-of-principle studies: Cancer Cell encourages the publication of mechanism-based proof-of-principle clinical studies, which demonstrate the feasibility of a specific therapeutic approach or diagnostic test.