Deep Circuit Compression for Quantum Dynamics via Tensor Networks

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-07-09 DOI:10.22331/q-2025-07-09-1789
Joe Gibbs, Lukasz Cincio
{"title":"Deep Circuit Compression for Quantum Dynamics via Tensor Networks","authors":"Joe Gibbs, Lukasz Cincio","doi":"10.22331/q-2025-07-09-1789","DOIUrl":null,"url":null,"abstract":"Dynamic quantum simulation is a leading application for achieving quantum advantage. However, high circuit depths remain a limiting factor on near-term quantum hardware. We present a compilation algorithm based on Matrix Product Operators for generating compressed circuits enabling real-time simulation on digital quantum computers, that for a given depth are more accurate than all Trotterizations of the same depth. By the efficient use of environment tensors, the algorithm is scalable in depth far beyond prior work, and we present circuit compilations of up to 64 layers of $SU(4)$ gates. Surpassing only 1D circuits, our approach can flexibly target a particular quasi-2D gate topology. We demonstrate this by compiling a 52-qubit 2D Transverse-Field Ising propagator onto the IBM Heavy-Hex topology. For all circuit depths and widths tested, we produce circuits with smaller errors than all equivalent depth Trotter unitaries, corresponding to reductions in error by up to 4 orders of magnitude and circuit depth compressions with a factor of over 6.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"48 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-07-09-1789","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic quantum simulation is a leading application for achieving quantum advantage. However, high circuit depths remain a limiting factor on near-term quantum hardware. We present a compilation algorithm based on Matrix Product Operators for generating compressed circuits enabling real-time simulation on digital quantum computers, that for a given depth are more accurate than all Trotterizations of the same depth. By the efficient use of environment tensors, the algorithm is scalable in depth far beyond prior work, and we present circuit compilations of up to 64 layers of $SU(4)$ gates. Surpassing only 1D circuits, our approach can flexibly target a particular quasi-2D gate topology. We demonstrate this by compiling a 52-qubit 2D Transverse-Field Ising propagator onto the IBM Heavy-Hex topology. For all circuit depths and widths tested, we produce circuits with smaller errors than all equivalent depth Trotter unitaries, corresponding to reductions in error by up to 4 orders of magnitude and circuit depth compressions with a factor of over 6.
基于张量网络的量子动力学深度电路压缩
动态量子模拟是实现量子优势的主要应用。然而,高电路深度仍然是近期量子硬件的限制因素。我们提出了一种基于矩阵乘积算子的编译算法,用于生成能够在数字量子计算机上进行实时仿真的压缩电路,对于给定深度,该算法比相同深度的所有Trotterizations更准确。通过有效地使用环境张量,该算法的深度可扩展性远远超出先前的工作,并且我们提出了多达64层$SU(4)$门的电路编译。我们的方法超越了一维电路,可以灵活地针对特定的准二维栅极拓扑。我们通过在IBM Heavy-Hex拓扑上编译52量子位2D横场Ising传播器来证明这一点。对于所有测试的电路深度和宽度,我们生产的电路误差小于所有等效深度Trotter单元,对应于误差减少高达4个数量级,电路深度压缩系数超过6。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信