Matthias Broser,Spyridon Kaziannis,Ivo H M van Stokkum,Atripan Mukherjee,Jakub Dostal,Wayne Busse,Arno Munhoven,Cesar Bernardo,Peter Hegemann,Miroslav Kloz,John T M Kennis
{"title":"Multistep 11-cis to All-trans Retinal Photoisomerization in Bestrhodopsin, an Unusual Microbial Rhodopsin.","authors":"Matthias Broser,Spyridon Kaziannis,Ivo H M van Stokkum,Atripan Mukherjee,Jakub Dostal,Wayne Busse,Arno Munhoven,Cesar Bernardo,Peter Hegemann,Miroslav Kloz,John T M Kennis","doi":"10.1021/jacs.5c06216","DOIUrl":null,"url":null,"abstract":"Rhodopsins constitute a broad class of retinal-binding photoreceptors. Microbial rhodopsins are canonically activated through an all-trans to 13-cis photoisomerization, whereas animal rhodopsins are mostly activated through an 11-cis to all-trans isomerization. Bestrhodopsins constitute a special microbial rhodopsin subfamily, with bistable rhodopsin domains that can be photoswitched between a far red-absorbing state D661 and a green-absorbing state P540. Its photochemistry involves a peculiar all-trans to 11-cis isomerization for the D661 to P540 photoreaction and vice versa. Here, we present the P. antarctica bestrhodopsin 11-cis to all-trans photoreaction as determined by femtosecond-to-submillisecond transient absorption, femtosecond stimulated Raman and flash-photolysis spectroscopy. The primary photoreaction involves ultrafast isomerizations in 240 fs from the 11-cis reactant to a mixture of highly distorted all-trans and 13-cis photoproducts. The 13-cis fraction then thermally isomerizes to a distorted all-trans RSB in 120 ps. We propose bicycle pedal models for the branched photoisomerizations with corotation of the C11═C12 and C13═C14 double bonds. One reactant fraction undergoes bicycle pedal motion aborted at the C13═C14 double bond, resulting in all-trans retinal. The other fraction undergoes a full bicycle pedal motion of both C11═C12 and C13═C14, resulting in 13-cis retinal. The primary products are trapped high up the ground-state potential energy surface with a low energetic barrier that facilitates thermal isomerization from 13-cis to all-trans retinal in 120 ps. All-trans retinal then structurally and energetically relaxes with subsequent time constants of 0.7 and 62 μs and 4.4 ms, along with counterion protonation, completing the P540 to D661 photoreaction.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"153 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c06216","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Rhodopsins constitute a broad class of retinal-binding photoreceptors. Microbial rhodopsins are canonically activated through an all-trans to 13-cis photoisomerization, whereas animal rhodopsins are mostly activated through an 11-cis to all-trans isomerization. Bestrhodopsins constitute a special microbial rhodopsin subfamily, with bistable rhodopsin domains that can be photoswitched between a far red-absorbing state D661 and a green-absorbing state P540. Its photochemistry involves a peculiar all-trans to 11-cis isomerization for the D661 to P540 photoreaction and vice versa. Here, we present the P. antarctica bestrhodopsin 11-cis to all-trans photoreaction as determined by femtosecond-to-submillisecond transient absorption, femtosecond stimulated Raman and flash-photolysis spectroscopy. The primary photoreaction involves ultrafast isomerizations in 240 fs from the 11-cis reactant to a mixture of highly distorted all-trans and 13-cis photoproducts. The 13-cis fraction then thermally isomerizes to a distorted all-trans RSB in 120 ps. We propose bicycle pedal models for the branched photoisomerizations with corotation of the C11═C12 and C13═C14 double bonds. One reactant fraction undergoes bicycle pedal motion aborted at the C13═C14 double bond, resulting in all-trans retinal. The other fraction undergoes a full bicycle pedal motion of both C11═C12 and C13═C14, resulting in 13-cis retinal. The primary products are trapped high up the ground-state potential energy surface with a low energetic barrier that facilitates thermal isomerization from 13-cis to all-trans retinal in 120 ps. All-trans retinal then structurally and energetically relaxes with subsequent time constants of 0.7 and 62 μs and 4.4 ms, along with counterion protonation, completing the P540 to D661 photoreaction.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.