Adam Smith, Maria Mylova, Philippe Brax, Carsten van de Bruck, C.P. Burgess and Anne-Christine Davis
{"title":"A minimal axio-dilaton dark sector","authors":"Adam Smith, Maria Mylova, Philippe Brax, Carsten van de Bruck, C.P. Burgess and Anne-Christine Davis","doi":"10.1088/1475-7516/2025/07/023","DOIUrl":null,"url":null,"abstract":"In scalar-tensor theories it is the two-derivative sigma-model interactions that like to compete at low energies with the two-derivative interactions of General Relativity (GR) — at least once the dangerous zero-derivative terms of the scalar potential are suppressed (such as by a shift symmetry). But nontrivial two-derivative interactions require at least two scalars to exist and so never arise in the single-scalar models most commonly explored. Axio-dilaton models provide a well-motivated minimal class of models for which these self-interactions can be explored. We review this class of models and investigate whether these minimal two fields can suffice to describe both Dark Matter and Dark Energy. We find that they can — the axion is the Dark Matter and the dilaton is the Dark Energy — and that they robustly predict several new phenomena for the CMB and structure formation that can be sought in observations. These include specific types of Dark Energy evolution and small space- and time-dependent changes to particle masses post-recombination that alter the Integrated Sachs-Wolfe effect, cause small changes to structure growth and more.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"8 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/07/023","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In scalar-tensor theories it is the two-derivative sigma-model interactions that like to compete at low energies with the two-derivative interactions of General Relativity (GR) — at least once the dangerous zero-derivative terms of the scalar potential are suppressed (such as by a shift symmetry). But nontrivial two-derivative interactions require at least two scalars to exist and so never arise in the single-scalar models most commonly explored. Axio-dilaton models provide a well-motivated minimal class of models for which these self-interactions can be explored. We review this class of models and investigate whether these minimal two fields can suffice to describe both Dark Matter and Dark Energy. We find that they can — the axion is the Dark Matter and the dilaton is the Dark Energy — and that they robustly predict several new phenomena for the CMB and structure formation that can be sought in observations. These include specific types of Dark Energy evolution and small space- and time-dependent changes to particle masses post-recombination that alter the Integrated Sachs-Wolfe effect, cause small changes to structure growth and more.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.