Anjali Abirami Kugarajh, Marisol Traforetti, Andrea Maselli, Sabino Matarrese and Angelo Ricciardone
{"title":"Scalar-induced gravitational waves in modified gravity","authors":"Anjali Abirami Kugarajh, Marisol Traforetti, Andrea Maselli, Sabino Matarrese and Angelo Ricciardone","doi":"10.1088/1475-7516/2025/07/022","DOIUrl":null,"url":null,"abstract":"Scalar-Induced Gravitational Waves (SIGWs) — second-order tensor modes sourced by first-order scalar fluctuations in General Relativity (GR) — are expected to contribute to the Stochastic Gravitational Wave Background (SGWB) potentially detectable by current and future gravitational wave interferometers. In the framework of GR, this SGWB represents an unavoidable contribution to the gravitational wave spectrum. In this paper, we go beyond GR and we investigate the behavior of SIGWs in f(R) gravity. We explore how the SIGW spectrum is influenced across a broad range of frequencies, from the nano-Hz regime, where the Pulsar Timing Array (PTA) operates, through the milli-Hz band probed by the space-based LISA detector, up to the kilo-Hz frequency range, where the ground-based LIGO/Virgo/KAGRA network is currently operational. Our results indicate that the beyond-GR correction leaves an observational imprint, mainly in the low-frequency part of the spectrum, giving the possibility to use SIGW to constrain GR on scales on which we have limited information.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"3 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/07/022","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Scalar-Induced Gravitational Waves (SIGWs) — second-order tensor modes sourced by first-order scalar fluctuations in General Relativity (GR) — are expected to contribute to the Stochastic Gravitational Wave Background (SGWB) potentially detectable by current and future gravitational wave interferometers. In the framework of GR, this SGWB represents an unavoidable contribution to the gravitational wave spectrum. In this paper, we go beyond GR and we investigate the behavior of SIGWs in f(R) gravity. We explore how the SIGW spectrum is influenced across a broad range of frequencies, from the nano-Hz regime, where the Pulsar Timing Array (PTA) operates, through the milli-Hz band probed by the space-based LISA detector, up to the kilo-Hz frequency range, where the ground-based LIGO/Virgo/KAGRA network is currently operational. Our results indicate that the beyond-GR correction leaves an observational imprint, mainly in the low-frequency part of the spectrum, giving the possibility to use SIGW to constrain GR on scales on which we have limited information.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.