Xuan Ren, Gaobo Zhang, Boqian Zhou, Wenting Gu, Xue Jiang, Hongen Liao, Meng-Xing Tang, Xin Liu
{"title":"Revealing Cerebral Microvascular Changes in Diabetic Rodents With Ultrasound Localization Microscopy","authors":"Xuan Ren, Gaobo Zhang, Boqian Zhou, Wenting Gu, Xue Jiang, Hongen Liao, Meng-Xing Tang, Xin Liu","doi":"10.2337/db25-0007","DOIUrl":null,"url":null,"abstract":"Microvasculature and hemodynamic changes in the cerebrovascular system are valuable indicators for the investigation of diabetic cerebrovascular disease. However, it is challenging for conventional imaging techniques to capture these minute features, meaning that the specific effects of diabetes on the brain vasculature and its potential disruption of brain function remain inadequately investigated. Ultrasound localization microscopy, with its unprecedented subdiffraction resolution and microvascular sensitivity, enables previously unobserved subtle variations to be revealed. Here, we aimed to leverage this advanced imaging technology to explore the alterations of brain in a diabetic rodent model in vivo. Parallel comparisons were made between diabetic rats and age-matched controls, and longitudinal assessments were performed before and after development of diabetes. In parallel comparisons, we found that rats with diabetes had significantly reduced vascular density in several key brain regions, including the striatum (13.70%), basal forebrain (8.48%), thalamus (12.20%), hypothalamus (20.85%), and hippocampus (8.73%). These findings were further supported by vascular staining and high-field MRI results. In addition, we demonstrated that a slowing of blood flow could be observed in the above brain regions. These results pave the way to understanding the effects of diabetes on the cerebral vasculature and may enable the future development of therapeutic and intervention strategies for diabetic cerebrovascular lesions. ARTICLE HIGHLIGHTS Cerebral microvascular disease can be triggered in people with diabetes who have chronic hyperglycemia. The aim of our study was to understand what effect diabetes has on the cerebral vasculature. In a rodent model, diabetes caused varying degrees of reduced cerebral vascular density and slowed cerebral blood flow in the brain striatum, basal forebrain, thalamus, hypothalamus, and hippocampus. There is a correlation between vessel density and blood flow velocity and the correlation changes in the diabetic state.","PeriodicalId":11376,"journal":{"name":"Diabetes","volume":"153 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/db25-0007","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Microvasculature and hemodynamic changes in the cerebrovascular system are valuable indicators for the investigation of diabetic cerebrovascular disease. However, it is challenging for conventional imaging techniques to capture these minute features, meaning that the specific effects of diabetes on the brain vasculature and its potential disruption of brain function remain inadequately investigated. Ultrasound localization microscopy, with its unprecedented subdiffraction resolution and microvascular sensitivity, enables previously unobserved subtle variations to be revealed. Here, we aimed to leverage this advanced imaging technology to explore the alterations of brain in a diabetic rodent model in vivo. Parallel comparisons were made between diabetic rats and age-matched controls, and longitudinal assessments were performed before and after development of diabetes. In parallel comparisons, we found that rats with diabetes had significantly reduced vascular density in several key brain regions, including the striatum (13.70%), basal forebrain (8.48%), thalamus (12.20%), hypothalamus (20.85%), and hippocampus (8.73%). These findings were further supported by vascular staining and high-field MRI results. In addition, we demonstrated that a slowing of blood flow could be observed in the above brain regions. These results pave the way to understanding the effects of diabetes on the cerebral vasculature and may enable the future development of therapeutic and intervention strategies for diabetic cerebrovascular lesions. ARTICLE HIGHLIGHTS Cerebral microvascular disease can be triggered in people with diabetes who have chronic hyperglycemia. The aim of our study was to understand what effect diabetes has on the cerebral vasculature. In a rodent model, diabetes caused varying degrees of reduced cerebral vascular density and slowed cerebral blood flow in the brain striatum, basal forebrain, thalamus, hypothalamus, and hippocampus. There is a correlation between vessel density and blood flow velocity and the correlation changes in the diabetic state.
期刊介绍:
Diabetes is a scientific journal that publishes original research exploring the physiological and pathophysiological aspects of diabetes mellitus. We encourage submissions of manuscripts pertaining to laboratory, animal, or human research, covering a wide range of topics. Our primary focus is on investigative reports investigating various aspects such as the development and progression of diabetes, along with its associated complications. We also welcome studies delving into normal and pathological pancreatic islet function and intermediary metabolism, as well as exploring the mechanisms of drug and hormone action from a pharmacological perspective. Additionally, we encourage submissions that delve into the biochemical and molecular aspects of both normal and abnormal biological processes.
However, it is important to note that we do not publish studies relating to diabetes education or the application of accepted therapeutic and diagnostic approaches to patients with diabetes mellitus. Our aim is to provide a platform for research that contributes to advancing our understanding of the underlying mechanisms and processes of diabetes.