VOXEL-TO-BLADDER FULLNESS SENSATION.

Arda Bayer, Betsy H Salazar, Kris Hoffman, Behnaam Aazhang, Rose Khavari
{"title":"VOXEL-TO-BLADDER FULLNESS SENSATION.","authors":"Arda Bayer, Betsy H Salazar, Kris Hoffman, Behnaam Aazhang, Rose Khavari","doi":"10.1115/dmd2025-1068","DOIUrl":null,"url":null,"abstract":"<p><p>Current medical diagnosis and treatment methods for neurogenic lower urinary tract dysfunction (NLUTD) disorders are constrained by our limited understanding of how a set of the complex neural circuits that regulate the LUT function. Identifying robust biomarkers for perceived bladder sensation could be key to advancing diagnostic and therapeutic modalities for NLUTD. In this work, we applied a transfer learning approach to infer bladder fullness sensation from functional magnetic resonance imaging (fMRI) data. While the proposed approach effectively represented fMRI scans in the embedding space, it did not predict bladder fullness sensation significantly better than random chance.</p>","PeriodicalId":520351,"journal":{"name":"Proceedings of the ... Design of Medical Devices Conference. Design of Medical Devices Conference","volume":"2025 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12235608/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Design of Medical Devices Conference. Design of Medical Devices Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dmd2025-1068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current medical diagnosis and treatment methods for neurogenic lower urinary tract dysfunction (NLUTD) disorders are constrained by our limited understanding of how a set of the complex neural circuits that regulate the LUT function. Identifying robust biomarkers for perceived bladder sensation could be key to advancing diagnostic and therapeutic modalities for NLUTD. In this work, we applied a transfer learning approach to infer bladder fullness sensation from functional magnetic resonance imaging (fMRI) data. While the proposed approach effectively represented fMRI scans in the embedding space, it did not predict bladder fullness sensation significantly better than random chance.

体素到膀胱的充盈感。
目前对神经源性下尿路功能障碍(NLUTD)疾病的医学诊断和治疗方法受到我们对一组复杂神经回路如何调节下尿路功能的有限理解的限制。识别膀胱感觉的生物标志物可能是推进NLUTD诊断和治疗模式的关键。在这项工作中,我们应用迁移学习方法从功能磁共振成像(fMRI)数据推断膀胱充盈感。虽然所提出的方法在嵌入空间中有效地表示功能磁共振成像扫描,但它并没有比随机机会更好地预测膀胱充盈感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信