Prediction of the infecting organism in peritoneal dialysis patients with acute peritonitis using interpretable Tsetlin Machines.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-06-19 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf140
Olga Tarasyuk, Anatoliy Gorbenko, Matthias Eberl, Nicholas Topley, Jingjing Zhang, Rishad Shafik, Alex Yakovlev
{"title":"Prediction of the infecting organism in peritoneal dialysis patients with acute peritonitis using interpretable Tsetlin Machines.","authors":"Olga Tarasyuk, Anatoliy Gorbenko, Matthias Eberl, Nicholas Topley, Jingjing Zhang, Rishad Shafik, Alex Yakovlev","doi":"10.1093/bioadv/vbaf140","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The analysis of complex biomedical datasets is becoming central to understanding disease mechanisms, aiding risk stratification and guiding patient management. However, the utility of computational methods is often constrained by their lack of interpretability, which is particularly relevant in clinically critical areas where rapid initiation of targeted therapies is key.</p><p><strong>Results: </strong>To define diagnostically relevant immune signatures in peritoneal dialysis patients presenting with acute peritonitis, we analysed a comprehensive array of cellular and soluble parameters in cloudy peritoneal effluents. Utilizing Tsetlin Machines, a logic-based machine learning approach, we identified pathogen-specific immune fingerprints for different bacterial groups, each characterized by unique biomarker combinations. Unlike traditional 'black box' machine learning models, Tsetlin Machines identified clear, logical rules in the dataset that pointed towards distinctly nuanced immune responses to different types of bacterial infection. Importantly, these immune signatures could be easily visualized to facilitate their interpretation, thereby allowing for rapid, accurate and transparent decision-making. This unique diagnostic capacity of Tsetlin Machines could help deliver early patient risk stratification and support informed treatment choices in advance of conventional microbiological culture results, thus guiding antibiotic stewardship and contributing to improved patient outcomes.</p><p><strong>Availability and implementation: </strong>All underlying tools and the anonymized data underpinning this publication are available at https://github.com/anatoliy-gorbenko/biomarkers-visualization.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf140"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12237506/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The analysis of complex biomedical datasets is becoming central to understanding disease mechanisms, aiding risk stratification and guiding patient management. However, the utility of computational methods is often constrained by their lack of interpretability, which is particularly relevant in clinically critical areas where rapid initiation of targeted therapies is key.

Results: To define diagnostically relevant immune signatures in peritoneal dialysis patients presenting with acute peritonitis, we analysed a comprehensive array of cellular and soluble parameters in cloudy peritoneal effluents. Utilizing Tsetlin Machines, a logic-based machine learning approach, we identified pathogen-specific immune fingerprints for different bacterial groups, each characterized by unique biomarker combinations. Unlike traditional 'black box' machine learning models, Tsetlin Machines identified clear, logical rules in the dataset that pointed towards distinctly nuanced immune responses to different types of bacterial infection. Importantly, these immune signatures could be easily visualized to facilitate their interpretation, thereby allowing for rapid, accurate and transparent decision-making. This unique diagnostic capacity of Tsetlin Machines could help deliver early patient risk stratification and support informed treatment choices in advance of conventional microbiological culture results, thus guiding antibiotic stewardship and contributing to improved patient outcomes.

Availability and implementation: All underlying tools and the anonymized data underpinning this publication are available at https://github.com/anatoliy-gorbenko/biomarkers-visualization.

Abstract Image

Abstract Image

Abstract Image

使用可解释的Tsetlin机器预测急性腹膜炎腹膜透析患者的感染微生物。
动机:对复杂生物医学数据集的分析正成为理解疾病机制、帮助风险分层和指导患者管理的核心。然而,计算方法的实用性往往受到其缺乏可解释性的限制,这在快速启动靶向治疗的关键临床关键领域尤为重要。结果:为了确定急性腹膜炎腹膜透析患者的诊断相关免疫特征,我们分析了浑浊腹膜流出物中的一系列细胞和可溶性参数。利用Tsetlin机器,一种基于逻辑的机器学习方法,我们确定了不同细菌群的病原体特异性免疫指纹,每个细菌群都有独特的生物标志物组合。与传统的“黑箱”机器学习模型不同,Tsetlin Machines在数据集中发现了清晰的逻辑规则,这些规则指向对不同类型细菌感染的明显细微的免疫反应。重要的是,这些免疫特征可以很容易地可视化,以促进它们的解释,从而允许快速、准确和透明的决策。Tsetlin机器的这种独特的诊断能力可以帮助提供早期患者风险分层,并在常规微生物培养结果之前支持知情的治疗选择,从而指导抗生素管理并有助于改善患者的预后。可用性和实现:支持本出版物的所有底层工具和匿名数据可在https://github.com/anatoliy-gorbenko/biomarkers-visualization上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信