FPGA acceleration of GWAS permutation testing.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-06-18 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf145
Yaniv Swiel, Jean-Tristan Brandenburg, Mahtaab Hayat, Wenlong Carl Chen, Mitchell A Cox, Scott Hazelhurst
{"title":"FPGA acceleration of GWAS permutation testing.","authors":"Yaniv Swiel, Jean-Tristan Brandenburg, Mahtaab Hayat, Wenlong Carl Chen, Mitchell A Cox, Scott Hazelhurst","doi":"10.1093/bioadv/vbaf145","DOIUrl":null,"url":null,"abstract":"<p><p><b></b> Genome-wide association studies (GWASs) analyse genetic variation across many individuals to identify single-nucleotide polymorphisms (SNPs) associated with complex traits. They typically include millions of SNPs from thousands of individuals, creating a multiple testing problem where the probability of false associations increases with the number of SNPs tested. While permutation testing provides accurate control of false positive rates, it is computationally expensive and slow for large datasets. This research presents an FPGA-based tool designed for cloud deployment on AWS EC2 instances that significantly accelerates GWAS permutation testing for continuous phenotypes. The tool implements two algorithms: maxT and adaptive permutation testing. Performance comparisons using a breast cancer dataset (13.7 million SNPs from 3652 individuals) showed large speedups over PLINK running on 40 CPU cores. For 1000 maxT permutations, the FPGA tool completed analysis in 22 min versus PLINK's 7 days. For 100 million adaptive permutations, FPGA required 325 min compared to PLINK's 8.5 days. The tool handled 700 million adaptive permutations in 33 h-a workload which would require over a month for CPU-based analysis. FPGA solution provides accessible, order-of-magnitude performance improvements without requiring FPGA expertise or dedicated cluster access.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf145"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12237511/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Genome-wide association studies (GWASs) analyse genetic variation across many individuals to identify single-nucleotide polymorphisms (SNPs) associated with complex traits. They typically include millions of SNPs from thousands of individuals, creating a multiple testing problem where the probability of false associations increases with the number of SNPs tested. While permutation testing provides accurate control of false positive rates, it is computationally expensive and slow for large datasets. This research presents an FPGA-based tool designed for cloud deployment on AWS EC2 instances that significantly accelerates GWAS permutation testing for continuous phenotypes. The tool implements two algorithms: maxT and adaptive permutation testing. Performance comparisons using a breast cancer dataset (13.7 million SNPs from 3652 individuals) showed large speedups over PLINK running on 40 CPU cores. For 1000 maxT permutations, the FPGA tool completed analysis in 22 min versus PLINK's 7 days. For 100 million adaptive permutations, FPGA required 325 min compared to PLINK's 8.5 days. The tool handled 700 million adaptive permutations in 33 h-a workload which would require over a month for CPU-based analysis. FPGA solution provides accessible, order-of-magnitude performance improvements without requiring FPGA expertise or dedicated cluster access.

Abstract Image

Abstract Image

Abstract Image

FPGA加速GWAS排列测试。
全基因组关联研究(GWASs)分析了许多个体的遗传变异,以确定与复杂性状相关的单核苷酸多态性(snp)。它们通常包括来自数千个人的数百万个snp,这就产生了一个多重测试问题,其中错误关联的概率随着测试的snp数量的增加而增加。虽然排列测试提供了对假阳性率的精确控制,但对于大型数据集来说,它的计算成本很高,速度也很慢。本研究提出了一种基于fpga的工具,该工具设计用于AWS EC2实例的云部署,可显着加速连续表型的GWAS排列测试。该工具实现了两种算法:maxT和自适应排列测试。使用乳腺癌数据集(来自3652个个体的1370万个snp)进行的性能比较显示,在40个CPU内核上运行PLINK的速度要快得多。对于1000个maxT排列,FPGA工具在22分钟内完成分析,而PLINK需要7天。对于1亿个自适应排列,FPGA需要325分钟,而PLINK需要8.5天。该工具在33小时内处理了7亿个自适应排列,而基于cpu的分析需要一个多月的时间。FPGA解决方案提供了可访问的、数量级的性能改进,而不需要FPGA专业知识或专用集群访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信