Continuous-Time Neural Networks Can Stably Memorize Random Spike Trains.

IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hugo Aguettaz, Hans-Andrea Loeliger
{"title":"Continuous-Time Neural Networks Can Stably Memorize Random Spike Trains.","authors":"Hugo Aguettaz, Hans-Andrea Loeliger","doi":"10.1162/neco_a_01768","DOIUrl":null,"url":null,"abstract":"<p><p>This letter explores the capability of continuous-time recurrent neural networks to store and recall precisely timed scores of spike trains. We show (by numerical experiments) that this is indeed possible: within some range of parameters, any random score of spike trains (for all neurons in the network) can be robustly memorized and autonomously reproduced with stable accurate relative timing of all spikes, with probability close to one. We also demonstrate associative recall under noisy conditions. In these experiments, the required synaptic weights are computed offline to satisfy a template that encourages temporal stability.</p>","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":" ","pages":"1-30"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/neco_a_01768","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This letter explores the capability of continuous-time recurrent neural networks to store and recall precisely timed scores of spike trains. We show (by numerical experiments) that this is indeed possible: within some range of parameters, any random score of spike trains (for all neurons in the network) can be robustly memorized and autonomously reproduced with stable accurate relative timing of all spikes, with probability close to one. We also demonstrate associative recall under noisy conditions. In these experiments, the required synaptic weights are computed offline to satisfy a template that encourages temporal stability.

连续时间神经网络稳定记忆随机尖峰列车。
这封信探讨了连续时间递归神经网络存储和回忆精确定时尖峰列车分数的能力。我们(通过数值实验)表明,这确实是可能的:在某些参数范围内,任何随机的尖峰序列分数(对于网络中的所有神经元)都可以被鲁棒记忆,并在所有尖峰稳定准确的相对定时下自主再现,概率接近于1。我们还展示了在噪声条件下的联想回忆。在这些实验中,所需的突触权重是离线计算的,以满足一个鼓励时间稳定性的模板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Computation
Neural Computation 工程技术-计算机:人工智能
CiteScore
6.30
自引率
3.40%
发文量
83
审稿时长
3.0 months
期刊介绍: Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信