Johnny Jingze Li, Sebastian Pardo Guerra, Kalyan Basu, Gabriel A Silva
{"title":"A Categorical Framework for Quantifying Emergent Effects in Network Topology.","authors":"Johnny Jingze Li, Sebastian Pardo Guerra, Kalyan Basu, Gabriel A Silva","doi":"10.1162/neco_a_01766","DOIUrl":null,"url":null,"abstract":"<p><p>Emergent effect is crucial to understanding the properties of complex systems that do not appear in their basic units, but there has been a lack of theories to measure and understand its mechanisms. In this letter, we consider emergence as a kind of structural nonlinearity, discuss a framework based on homological algebra that encodes emergence as the mathematical structure of cohomologies, and then apply it to network models to develop a computational measure of emergence. This framework ties the potential for emergent effects of a system to its network topology and local structures, paving the way to predict and understand the cause of emergent effects. We show in our numerical experiment that our measure of emergence correlates with the existing information-theoretic measure of emergence.</p>","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":" ","pages":"1-30"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/neco_a_01766","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Emergent effect is crucial to understanding the properties of complex systems that do not appear in their basic units, but there has been a lack of theories to measure and understand its mechanisms. In this letter, we consider emergence as a kind of structural nonlinearity, discuss a framework based on homological algebra that encodes emergence as the mathematical structure of cohomologies, and then apply it to network models to develop a computational measure of emergence. This framework ties the potential for emergent effects of a system to its network topology and local structures, paving the way to predict and understand the cause of emergent effects. We show in our numerical experiment that our measure of emergence correlates with the existing information-theoretic measure of emergence.
期刊介绍:
Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.