Yanqin Bian, Fang Li, Xinyu A, Zheng Xiang, Nanshan Ma, Jianye Wang, Boran Cao, Pengfei Xin, Xuan Cheng, Chang Liu, Bei Xiang, Jun Shen, Qigui Lu, Lianbo Xiao
{"title":"Juanbi Qianggu Formula inhibits fibroblast-like synovicytes activation via repressing LncRNA ITSN1-2 to promote RIP2 K48 ubiquitination.","authors":"Yanqin Bian, Fang Li, Xinyu A, Zheng Xiang, Nanshan Ma, Jianye Wang, Boran Cao, Pengfei Xin, Xuan Cheng, Chang Liu, Bei Xiang, Jun Shen, Qigui Lu, Lianbo Xiao","doi":"10.1186/s13020-025-01164-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Long non-coding RNA ITSN1-2(lncRNA ITSN1-2) promotes fibroblast-like synovicytes (FLS) proliferation and suppress apoptosis through activation of the NOD2/RIP2 signaling pathway, thereby exacerbating synovitis in Rheumatoid arthritis (RA) pathology. Juanbi Qianggu Formula (JBQG), a clinically efficacious traditional Chinese medicine, has shown significant efficiency in inhibiting FLS activation in RA and alleviating disease progression in RA patients. However, the molecular mechanism underlying JBQG's anti-arthritic effects remains incompletely understood, particularly regarding its potential to modulate lncRNA ITSN1-2-mediated NOD2/RIP2 signaling in FLS activation. This study aims to investigate the functional interplay between JBQG and the lncRNA ITSN1-2/NOD2/RIP2 axis in regulating FLS behavior during RA development.</p><p><strong>Methods: </strong>Synovial tissues were collected from 24 rheumatoid arthritis (RA) patients and 20 osteoarthritis (OA) patients to observe the lncRNA ITSN1-2/NOD2/RIP2 signal in RA synovial tissue and its correlation with RA inflammation and bone destruction. Blood-absorbed components of JBQG were analyzed through mass spectrometry, while network pharmacology and in vitro experiments were conducted to investigate JBQG's regulatory effects on NOD2/RIP2 signaling. Mechanistic studies focused on lncRNA-ITSN1-2/miR-2683-3p/PELI3/RIP2 interactions, employing dual-luciferase assays, FISH staining, and Co-IP/Western blot. To evaluate therapeutic efficacy, a collagen-induced arthritis (CIA) rat model with lncRNA ITSN1-2 overexpression was established. JBQG's effects were assessed through histopathological examination and serum inflammation factors analysis following 23 g/kg/day treatment for 4 weeks.</p><p><strong>Results: </strong>LncRNA ITSN1-2/NOD2/RIP2 signaling was significantly activated in RA synovial tissues, showing profound correlation with RA disease inflammation and progression. JBQG treatment reduced cytoplasmic lncRNA ITSN1-2 levels in FLS, thereby inhibiting NOD2/RIP2 pathway activation and FLS functions in migration and invasion. Mechanistically, lncRNA ITSN1-2 exerted competitive endogenous RNA (ceRNA) activity by sequestering miR-2683-3p, which upregulated PELI3 expression. This induction promoted RIP2 K48 ubiquitination, destabilizing RIP2 protein integrity and inhibiting downstream NF-κB signaling. Consequently, FLS migratory and invasive capacities were significantly diminished, underscoring JBQG's dual regulatory impact on lncRNA-miRNA cross-talk and inflammatory cytokine cascades.</p><p><strong>Conclusion: </strong>This study demonstrates that JBQG exerts potent anti-arthritic effects in RA therapy through dual regulatory mechanisms targeting the lncRNA ITSN1-2/miR-2683-3p/PELI3/RIP2 axis.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"20 1","pages":"109"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12235879/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13020-025-01164-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Long non-coding RNA ITSN1-2(lncRNA ITSN1-2) promotes fibroblast-like synovicytes (FLS) proliferation and suppress apoptosis through activation of the NOD2/RIP2 signaling pathway, thereby exacerbating synovitis in Rheumatoid arthritis (RA) pathology. Juanbi Qianggu Formula (JBQG), a clinically efficacious traditional Chinese medicine, has shown significant efficiency in inhibiting FLS activation in RA and alleviating disease progression in RA patients. However, the molecular mechanism underlying JBQG's anti-arthritic effects remains incompletely understood, particularly regarding its potential to modulate lncRNA ITSN1-2-mediated NOD2/RIP2 signaling in FLS activation. This study aims to investigate the functional interplay between JBQG and the lncRNA ITSN1-2/NOD2/RIP2 axis in regulating FLS behavior during RA development.
Methods: Synovial tissues were collected from 24 rheumatoid arthritis (RA) patients and 20 osteoarthritis (OA) patients to observe the lncRNA ITSN1-2/NOD2/RIP2 signal in RA synovial tissue and its correlation with RA inflammation and bone destruction. Blood-absorbed components of JBQG were analyzed through mass spectrometry, while network pharmacology and in vitro experiments were conducted to investigate JBQG's regulatory effects on NOD2/RIP2 signaling. Mechanistic studies focused on lncRNA-ITSN1-2/miR-2683-3p/PELI3/RIP2 interactions, employing dual-luciferase assays, FISH staining, and Co-IP/Western blot. To evaluate therapeutic efficacy, a collagen-induced arthritis (CIA) rat model with lncRNA ITSN1-2 overexpression was established. JBQG's effects were assessed through histopathological examination and serum inflammation factors analysis following 23 g/kg/day treatment for 4 weeks.
Results: LncRNA ITSN1-2/NOD2/RIP2 signaling was significantly activated in RA synovial tissues, showing profound correlation with RA disease inflammation and progression. JBQG treatment reduced cytoplasmic lncRNA ITSN1-2 levels in FLS, thereby inhibiting NOD2/RIP2 pathway activation and FLS functions in migration and invasion. Mechanistically, lncRNA ITSN1-2 exerted competitive endogenous RNA (ceRNA) activity by sequestering miR-2683-3p, which upregulated PELI3 expression. This induction promoted RIP2 K48 ubiquitination, destabilizing RIP2 protein integrity and inhibiting downstream NF-κB signaling. Consequently, FLS migratory and invasive capacities were significantly diminished, underscoring JBQG's dual regulatory impact on lncRNA-miRNA cross-talk and inflammatory cytokine cascades.
Conclusion: This study demonstrates that JBQG exerts potent anti-arthritic effects in RA therapy through dual regulatory mechanisms targeting the lncRNA ITSN1-2/miR-2683-3p/PELI3/RIP2 axis.
Chinese MedicineINTEGRATIVE & COMPLEMENTARY MEDICINE-PHARMACOLOGY & PHARMACY
CiteScore
7.90
自引率
4.10%
发文量
133
审稿时长
31 weeks
期刊介绍:
Chinese Medicine is an open access, online journal publishing evidence-based, scientifically justified, and ethical research into all aspects of Chinese medicine.
Areas of interest include recent advances in herbal medicine, clinical nutrition, clinical diagnosis, acupuncture, pharmaceutics, biomedical sciences, epidemiology, education, informatics, sociology, and psychology that are relevant and significant to Chinese medicine. Examples of research approaches include biomedical experimentation, high-throughput technology, clinical trials, systematic reviews, meta-analysis, sampled surveys, simulation, data curation, statistics, omics, translational medicine, and integrative methodologies.
Chinese Medicine is a credible channel to communicate unbiased scientific data, information, and knowledge in Chinese medicine among researchers, clinicians, academics, and students in Chinese medicine and other scientific disciplines of medicine.