Advancing genetic engineering with active learning: theory, implementations and potential opportunities.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Qixiu Du, Haochen Wang, Benben Jiang, Xiaowo Wang
{"title":"Advancing genetic engineering with active learning: theory, implementations and potential opportunities.","authors":"Qixiu Du, Haochen Wang, Benben Jiang, Xiaowo Wang","doi":"10.1093/bib/bbaf286","DOIUrl":null,"url":null,"abstract":"<p><p>Employing machine learning (ML) models to accelerate experimentation and uncover biological mechanisms has been a rising tendency in genetic engineering. However, effectively collecting data to enhance model accuracy and improve design remains challenging, especially when data quality is poor and validation resources are limited. Active learning (AL) addresses this by iteratively identifying promising candidates, thereby reducing experimental efforts while improving model performance. This review highlights how AL can assist scientists throughout the design-build-test-learn cycle, explore its various practical implementations, and discuss its potential through the integration of cross-domain expertise. In the age of genetic engineering revolutionized by data-driven ML models, AL presents an iterative framework that significantly enhances the functionalities of biomolecules and uncovers their intrinsic mechanisms, all while minimizing expenses and efforts.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236445/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf286","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Employing machine learning (ML) models to accelerate experimentation and uncover biological mechanisms has been a rising tendency in genetic engineering. However, effectively collecting data to enhance model accuracy and improve design remains challenging, especially when data quality is poor and validation resources are limited. Active learning (AL) addresses this by iteratively identifying promising candidates, thereby reducing experimental efforts while improving model performance. This review highlights how AL can assist scientists throughout the design-build-test-learn cycle, explore its various practical implementations, and discuss its potential through the integration of cross-domain expertise. In the age of genetic engineering revolutionized by data-driven ML models, AL presents an iterative framework that significantly enhances the functionalities of biomolecules and uncovers their intrinsic mechanisms, all while minimizing expenses and efforts.

主动学习推进基因工程:理论、实施和潜在机会。
利用机器学习(ML)模型来加速实验和揭示生物机制已经成为基因工程的一个上升趋势。然而,有效地收集数据以提高模型准确性和改进设计仍然具有挑战性,特别是在数据质量差和验证资源有限的情况下。主动学习(AL)通过迭代地识别有希望的候选对象来解决这个问题,从而在提高模型性能的同时减少实验工作量。这篇综述强调了人工智能如何在整个设计-构建-测试-学习周期中帮助科学家,探索其各种实际实现,并通过跨领域专业知识的整合讨论其潜力。在由数据驱动的ML模型彻底改变的基因工程时代,人工智能提出了一个迭代框架,显着增强了生物分子的功能并揭示了它们的内在机制,同时最大限度地减少了费用和努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信