Rapid cleavage of 6-[18F]fluoronicotinic acid prosthetic group governs BT12 glioblastoma xenograft uptake: implications for radiolabeling design of biomolecules.

IF 4.4 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Pyry Dillemuth, Abiodun Ayo, Xiaoqing Zhuang, Petter Lövdahl, Heidi Liljenbäck, Salli Kärnä, Tatsiana Auchynnikava, Jonne Kunnas, Jesse Ponkamo, Maxwell W G Miner, Johan Rajander, Jessica M Rosenholm, Anne Roivainen, Anu J Airaksinen, Pirjo Laakkonen, Xiang-Guo Li
{"title":"Rapid cleavage of 6-[<sup>18</sup>F]fluoronicotinic acid prosthetic group governs BT12 glioblastoma xenograft uptake: implications for radiolabeling design of biomolecules.","authors":"Pyry Dillemuth, Abiodun Ayo, Xiaoqing Zhuang, Petter Lövdahl, Heidi Liljenbäck, Salli Kärnä, Tatsiana Auchynnikava, Jonne Kunnas, Jesse Ponkamo, Maxwell W G Miner, Johan Rajander, Jessica M Rosenholm, Anne Roivainen, Anu J Airaksinen, Pirjo Laakkonen, Xiang-Guo Li","doi":"10.1186/s41181-025-00368-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Peptides radiolabeled with fluorine-18 are frequently synthesized using prosthetic groups. Among them, activated esters of 6-[<sup>18</sup>F]fluoronicotinic acid ([<sup>18</sup>F]FNA) have been prepared and successfully employed for <sup>18</sup>F-labeling of diverse biomolecules, including peptides. The utility of [<sup>18</sup>F]FNA as a prosthetic compound has been demonstrated in both preclinical and clinical settings, including radiopharmaceuticals targeting prostate-specific membrane antigen and poly(ADP ribose) polymerase inhibitors. This study aims to evaluate a [<sup>18</sup>F]FNA-conjugated nonapeptide, [<sup>18</sup>F]FNA-N-CooP, for positron emission tomography imaging of intracranial BT12 glioblastoma xenografts in a mouse model. Additionally, this study highlights the importance of including control experiments with prosthetic compound alone when it constitutes a major radiometabolite.</p><p><strong>Results: </strong>[<sup>18</sup>F]FNA-N-CooP successfully delineated intracranial glioblastoma xenografts yielding a standardized uptake value of 0.21 ± 0.03 (n = 4) and a tumor-to-brain ratio of 1.84 ± 0.29. Ex vivo autoradiography of tumor tissue showed a partial co-localization between radioactivity uptake and the target fatty acid binding protein 3 expression. However, in vivo instability of [<sup>18</sup>F]FNA-N-CooP was observed, with [<sup>18</sup>F]FNA identified as a major radiometabolite. Notably, control studies using [<sup>18</sup>F]FNA alone also visualized tumors, producing a standardized uptake value of 0.90 ± 0.10 (n = 4) and a tumor-to-brain ratio of 1.51 ± 0.08.</p><p><strong>Conclusions: </strong>Both [<sup>18</sup>F]FNA-N-CooP and [<sup>18</sup>F]FNA enabled PET visualization of human glioblastoma in the mouse model. However, the prominent presence of [<sup>18</sup>F]FNA as radiometabolite complicates the interpretation of [<sup>18</sup>F]FNA-N-CooP PET data, suggesting that the observed radioactivity uptake may primarily originate from [<sup>18</sup>F]FNA and other radiometabolites. Enhancing peptide stability is essential for improving imaging specificity. This study underscores the critical need to assess the imaging contributions of prosthetic groups when they function as significant radiometabolites.</p>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":"10 1","pages":"40"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238435/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Radiopharmacy and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41181-025-00368-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Peptides radiolabeled with fluorine-18 are frequently synthesized using prosthetic groups. Among them, activated esters of 6-[18F]fluoronicotinic acid ([18F]FNA) have been prepared and successfully employed for 18F-labeling of diverse biomolecules, including peptides. The utility of [18F]FNA as a prosthetic compound has been demonstrated in both preclinical and clinical settings, including radiopharmaceuticals targeting prostate-specific membrane antigen and poly(ADP ribose) polymerase inhibitors. This study aims to evaluate a [18F]FNA-conjugated nonapeptide, [18F]FNA-N-CooP, for positron emission tomography imaging of intracranial BT12 glioblastoma xenografts in a mouse model. Additionally, this study highlights the importance of including control experiments with prosthetic compound alone when it constitutes a major radiometabolite.

Results: [18F]FNA-N-CooP successfully delineated intracranial glioblastoma xenografts yielding a standardized uptake value of 0.21 ± 0.03 (n = 4) and a tumor-to-brain ratio of 1.84 ± 0.29. Ex vivo autoradiography of tumor tissue showed a partial co-localization between radioactivity uptake and the target fatty acid binding protein 3 expression. However, in vivo instability of [18F]FNA-N-CooP was observed, with [18F]FNA identified as a major radiometabolite. Notably, control studies using [18F]FNA alone also visualized tumors, producing a standardized uptake value of 0.90 ± 0.10 (n = 4) and a tumor-to-brain ratio of 1.51 ± 0.08.

Conclusions: Both [18F]FNA-N-CooP and [18F]FNA enabled PET visualization of human glioblastoma in the mouse model. However, the prominent presence of [18F]FNA as radiometabolite complicates the interpretation of [18F]FNA-N-CooP PET data, suggesting that the observed radioactivity uptake may primarily originate from [18F]FNA and other radiometabolites. Enhancing peptide stability is essential for improving imaging specificity. This study underscores the critical need to assess the imaging contributions of prosthetic groups when they function as significant radiometabolites.

6-[18F]氟烟酸假体基的快速裂解控制BT12胶质母细胞瘤异种移植物的摄取:对生物分子放射性标记设计的影响
背景:用氟-18放射性标记的肽通常是用假基合成的。其中,已制备出6-[18F]氟烟酸([18F]FNA)活性酯,并成功用于多种生物分子(包括多肽)的18F标记。[18F]FNA作为假体化合物的用途已在临床前和临床环境中得到证实,包括针对前列腺特异性膜抗原和聚(ADP核糖)聚合酶抑制剂的放射性药物。本研究旨在评价[18F] fna共轭非肽[18F]FNA-N-CooP在小鼠模型中颅内BT12胶质母细胞瘤异种移植中的正电子发射断层成像。此外,本研究强调了当假体化合物构成主要放射性代谢物时,单独进行对照实验的重要性。结果:[18F]FNA-N-CooP成功描绘了颅内胶质母细胞瘤异种移植物,其标准化摄取值为0.21±0.03 (n = 4),瘤脑比为1.84±0.29。肿瘤组织的离体放射自显像显示放射性摄取与靶脂肪酸结合蛋白3的表达部分共定位。然而,观察到[18F]FNA- n - coop的体内不稳定性,[18F]FNA被确定为主要的放射性代谢物。值得注意的是,单独使用[18F]FNA的对照研究也显示了肿瘤,产生了0.90±0.10 (n = 4)的标准化摄取值和1.51±0.08的肿瘤与脑比值。结论:[18F]FNA- n - coop和[18F]FNA均能在小鼠模型中实现人胶质母细胞瘤的PET可视化。然而,[18F]FNA作为放射性代谢物的显著存在使[18F]FNA- n - coop PET数据的解释变得复杂,这表明观察到的放射性摄取可能主要来自[18F]FNA和其他放射性代谢物。增强肽稳定性对提高成像特异性至关重要。这项研究强调了评估义肢基团作为重要放射性代谢物时的成像贡献的关键需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
8.70%
发文量
30
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信