Nucleophilic α-Functionalization of Benzyl Amines Using an Engineered Threonine Aldolase.

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yao Ouyang, Suhao Wang, Damien Sorigue, Todd K Hyster
{"title":"Nucleophilic α-Functionalization of Benzyl Amines Using an Engineered Threonine Aldolase.","authors":"Yao Ouyang, Suhao Wang, Damien Sorigue, Todd K Hyster","doi":"10.1021/jacs.5c04097","DOIUrl":null,"url":null,"abstract":"<p><p>Chiral amines are ubiquitous in pharmaceuticals and agrochemicals, making their efficient and selective synthesis a significant synthetic challenge. Threonine aldolases synthesize chiral amines via stereoselective C-C bond formation; however, they are restricted to small amino acids as pro-nucleophiles, limiting their utility in chemical synthesis. Here, we report an engineered threonine aldolase capable of α-functionalizing benzylamines. The evolved enzyme has excellent catalytic efficiency and accepts a broad range of (heterocyclic)benzyl amines and structurally diverse aldehydes to yield single-enantiomers of 1,2-amino alcohols in high-yield and diastereoselectivity. Mechanistic and crystallographic studies provide a rationale for how these mutations enable this previously unknown function. Moreover, beneficial mutations can be transferred to a related pyridoxal-dependent protein, highlighting the generality of these insights.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c04097","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chiral amines are ubiquitous in pharmaceuticals and agrochemicals, making their efficient and selective synthesis a significant synthetic challenge. Threonine aldolases synthesize chiral amines via stereoselective C-C bond formation; however, they are restricted to small amino acids as pro-nucleophiles, limiting their utility in chemical synthesis. Here, we report an engineered threonine aldolase capable of α-functionalizing benzylamines. The evolved enzyme has excellent catalytic efficiency and accepts a broad range of (heterocyclic)benzyl amines and structurally diverse aldehydes to yield single-enantiomers of 1,2-amino alcohols in high-yield and diastereoselectivity. Mechanistic and crystallographic studies provide a rationale for how these mutations enable this previously unknown function. Moreover, beneficial mutations can be transferred to a related pyridoxal-dependent protein, highlighting the generality of these insights.

用工程苏氨酸醛缩酶催化苯胺的亲核α-功能化。
手性胺在药品和农用化学品中无处不在,使其高效和选择性合成成为一个重大的合成挑战。苏氨酸醛缩酶通过立体选择性C-C键合成手性胺;然而,它们作为亲核试剂仅限于小氨基酸,限制了它们在化学合成中的应用。在这里,我们报道了一个工程苏氨酸醛缩酶能够α-功能化苄胺。该酶具有优异的催化效率,可接受多种(杂环)苯胺和结构多样的醛,以高收率和非对映选择性生成1,2-氨基醇的单对映体。机制和晶体学研究为这些突变如何实现这种以前未知的功能提供了基本原理。此外,有益的突变可以转移到相关的吡哆醛依赖蛋白上,突出了这些见解的普遍性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信