Jacklyn Levey, Md. Abedin, Chi Zhang, Emmanuel Odame, Lingling Zhang, Ha-Neul Jo, Kaia Douglas, Heidi Roehrich, Zhe Chen, Harald J. Junge
{"title":"The MDM2-p53 axis regulates norrin/frizzled4 signaling and blood-CNS barrier function","authors":"Jacklyn Levey, Md. Abedin, Chi Zhang, Emmanuel Odame, Lingling Zhang, Ha-Neul Jo, Kaia Douglas, Heidi Roehrich, Zhe Chen, Harald J. Junge","doi":"10.1126/scisignal.adt0983","DOIUrl":null,"url":null,"abstract":"<div >Norrin-induced activation of β-catenin–dependent signaling through the receptor frizzled4 in endothelial cells (ECs) is essential for establishing and maintaining blood-CNS barrier function. We sought to determine how this pathway is modulated under stress or disease conditions. Specifically, we investigated the role of p53 in endothelial blood-CNS barriers because increased abundance of the transcription factor p53 in ECs correlates with leaky CNS blood vessels in type 2 diabetes. Using transcriptomic, cell-based, and mouse genetic approaches, we identified interplay between p53 and its negative regulator MDM2 and norrin/frizzled4 signaling. Mice with an EC-specific ablation of <i>Mdm2</i> showed decreased norrin/frizzled4 signaling, reduced EC proliferation and retinal angiogenesis, and disrupted blood-retina barrier function, all of which were largely restored by concurrent <i>Trp53</i> deletion. Decreased norrin/frizzled4 signaling and inhibition of EC proliferation in response to p53 were associated with reduced expression of the condensin I complex component non-SMC condensin I complex subunit H (NCAPH). This study identifies a regulator of norrin/frizzled4 signaling and suggests that the clinical use of MDM2 inhibitors might impair the blood-CNS barrier. In addition, NCAPH may be a downstream effector of p53 in ECs and a candidate gene for familial exudative vitreoretinopathy (FEVR), which is caused by defects in norrin signaling.</div>","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":"18 894","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scisignal.adt0983","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Signaling","FirstCategoryId":"99","ListUrlMain":"https://www.science.org/doi/10.1126/scisignal.adt0983","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Norrin-induced activation of β-catenin–dependent signaling through the receptor frizzled4 in endothelial cells (ECs) is essential for establishing and maintaining blood-CNS barrier function. We sought to determine how this pathway is modulated under stress or disease conditions. Specifically, we investigated the role of p53 in endothelial blood-CNS barriers because increased abundance of the transcription factor p53 in ECs correlates with leaky CNS blood vessels in type 2 diabetes. Using transcriptomic, cell-based, and mouse genetic approaches, we identified interplay between p53 and its negative regulator MDM2 and norrin/frizzled4 signaling. Mice with an EC-specific ablation of Mdm2 showed decreased norrin/frizzled4 signaling, reduced EC proliferation and retinal angiogenesis, and disrupted blood-retina barrier function, all of which were largely restored by concurrent Trp53 deletion. Decreased norrin/frizzled4 signaling and inhibition of EC proliferation in response to p53 were associated with reduced expression of the condensin I complex component non-SMC condensin I complex subunit H (NCAPH). This study identifies a regulator of norrin/frizzled4 signaling and suggests that the clinical use of MDM2 inhibitors might impair the blood-CNS barrier. In addition, NCAPH may be a downstream effector of p53 in ECs and a candidate gene for familial exudative vitreoretinopathy (FEVR), which is caused by defects in norrin signaling.
期刊介绍:
"Science Signaling" is a reputable, peer-reviewed journal dedicated to the exploration of cell communication mechanisms, offering a comprehensive view of the intricate processes that govern cellular regulation. This journal, published weekly online by the American Association for the Advancement of Science (AAAS), is a go-to resource for the latest research in cell signaling and its various facets.
The journal's scope encompasses a broad range of topics, including the study of signaling networks, synthetic biology, systems biology, and the application of these findings in drug discovery. It also delves into the computational and modeling aspects of regulatory pathways, providing insights into how cells communicate and respond to their environment.
In addition to publishing full-length articles that report on groundbreaking research, "Science Signaling" also features reviews that synthesize current knowledge in the field, focus articles that highlight specific areas of interest, and editor-written highlights that draw attention to particularly significant studies. This mix of content ensures that the journal serves as a valuable resource for both researchers and professionals looking to stay abreast of the latest advancements in cell communication science.