Computation-guided exploration of the reaction parameter space of N,N-dimethylformamide hydrolysis†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ignas Pakamorė and Ross S. Forgan
{"title":"Computation-guided exploration of the reaction parameter space of N,N-dimethylformamide hydrolysis†","authors":"Ignas Pakamorė and Ross S. Forgan","doi":"10.1039/D5DD00200A","DOIUrl":null,"url":null,"abstract":"<p >Navigating the reaction parameter space can pose challenges, especially considering the exponential growth in the number of parameters even in seemingly straightforward chemical reactions or formulations. Consequently, recent research efforts have been increasingly dedicated to the development of computational tools aimed at facilitating the exploration process. Herein, we introduce ChemSPX, a Python-based program specifically crafted for exploring the complex landscape of reaction parameter space. We propose the use of the inverse distance function to map reaction parameter space and efficiently sample sparse regions. This is implemented in ChemSPX to allow the user to simply generate sets of reaction conditions that efficiently sample wide parameter spaces. In addition, the program includes tools necessary for the analysis and comprehension of the multidimensional parameter space landscape. The developed algorithms were utilized to experimentally investigate the hydrolysis of <em>N</em>,<em>N-</em>dimethylformamide (DMF), a commonly employed solvent, in the specific context of metal–organic framework synthesis. We use ChemSPX to generate batches of experiments to sample parameter space, starting from an empty space, but subsequently assessing under-sampled regions. We use statistical analysis and machine learning models to show that addition of strong acids induces hydrolysis, generating up to 1.0% (w/w) formic acid. The results show that ChemSPX can generate datasets that efficiently sample parameter space, in this case allowing the user to distinguish the individual effects of five different physical and chemical variables on reaction outcome.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 7","pages":" 1784-1793"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00200a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00200a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Navigating the reaction parameter space can pose challenges, especially considering the exponential growth in the number of parameters even in seemingly straightforward chemical reactions or formulations. Consequently, recent research efforts have been increasingly dedicated to the development of computational tools aimed at facilitating the exploration process. Herein, we introduce ChemSPX, a Python-based program specifically crafted for exploring the complex landscape of reaction parameter space. We propose the use of the inverse distance function to map reaction parameter space and efficiently sample sparse regions. This is implemented in ChemSPX to allow the user to simply generate sets of reaction conditions that efficiently sample wide parameter spaces. In addition, the program includes tools necessary for the analysis and comprehension of the multidimensional parameter space landscape. The developed algorithms were utilized to experimentally investigate the hydrolysis of N,N-dimethylformamide (DMF), a commonly employed solvent, in the specific context of metal–organic framework synthesis. We use ChemSPX to generate batches of experiments to sample parameter space, starting from an empty space, but subsequently assessing under-sampled regions. We use statistical analysis and machine learning models to show that addition of strong acids induces hydrolysis, generating up to 1.0% (w/w) formic acid. The results show that ChemSPX can generate datasets that efficiently sample parameter space, in this case allowing the user to distinguish the individual effects of five different physical and chemical variables on reaction outcome.

Abstract Image

N,N-二甲基甲酰胺水解反应参数空间的计算导向探索
导航反应参数空间可能会带来挑战,特别是考虑到参数数量的指数增长,即使在看似简单的化学反应或配方中。因此,最近的研究工作越来越多地致力于开发旨在促进勘探过程的计算工具。在这里,我们介绍ChemSPX,一个基于python的程序,专门用于探索反应参数空间的复杂景观。我们提出使用逆距离函数来映射反应参数空间并有效地采样稀疏区域。这在ChemSPX中实现,允许用户简单地生成一组反应条件,有效地采样宽参数空间。此外,该程序还包括分析和理解多维参数空间景观所需的工具。利用所开发的算法,实验研究了N,N-二甲基甲酰胺(DMF)在金属有机框架合成中的水解反应。我们使用ChemSPX生成一批实验来采样参数空间,从空白空间开始,但随后评估欠采样区域。我们使用统计分析和机器学习模型表明,添加强酸诱导水解,产生高达1.0% (w/w)的甲酸。结果表明,ChemSPX可以生成有效采样参数空间的数据集,在这种情况下,用户可以区分五种不同的物理和化学变量对反应结果的单个影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信