Nano Trees: nanopore signal processing and sublevel fitting using decision trees†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Deekshant Wadhwa, Philipp Mensing, James Harden, Paula Branco, Vincent Tabard-Cossa and Kyle Briggs
{"title":"Nano Trees: nanopore signal processing and sublevel fitting using decision trees†","authors":"Deekshant Wadhwa, Philipp Mensing, James Harden, Paula Branco, Vincent Tabard-Cossa and Kyle Briggs","doi":"10.1039/D5DD00060B","DOIUrl":null,"url":null,"abstract":"<p >As the complexity of solid-state nanopore experiments increases, analysis of the resulting electrical signals to determine biomolecular details becomes a challenge. State of the art techniques for this task perform poorly when transient signal characteristics approach the bandwidth limitations of the measurement electronics. In this work, we address this challenge through an algorithm, called Nano Trees, for fitting piecewise constant functions. Nano Trees leverages machine learning algorithms to provide fits to the noisy piecewise constant data that is characteristic of nanopore ionic current signals, producing accurate fits on transients as short as twice the rise time of the measurement system. We demonstrate the performance of our algorithm on several real and synthetic datasets. These findings underscore the generalizability and accuracy of this approach in the regime of fast molecular translocations.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 7","pages":" 1743-1750"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00060b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00060b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As the complexity of solid-state nanopore experiments increases, analysis of the resulting electrical signals to determine biomolecular details becomes a challenge. State of the art techniques for this task perform poorly when transient signal characteristics approach the bandwidth limitations of the measurement electronics. In this work, we address this challenge through an algorithm, called Nano Trees, for fitting piecewise constant functions. Nano Trees leverages machine learning algorithms to provide fits to the noisy piecewise constant data that is characteristic of nanopore ionic current signals, producing accurate fits on transients as short as twice the rise time of the measurement system. We demonstrate the performance of our algorithm on several real and synthetic datasets. These findings underscore the generalizability and accuracy of this approach in the regime of fast molecular translocations.

Abstract Image

纳米树:纳米孔信号处理和亚级拟合使用决策树†
随着固态纳米孔实验的复杂性增加,分析产生的电信号以确定生物分子细节成为一项挑战。当瞬态信号特性接近测量电子设备的带宽限制时,用于这项任务的最新技术表现不佳。在这项工作中,我们通过一种称为纳米树的算法来拟合分段常数函数来解决这一挑战。Nano Trees利用机器学习算法,对纳米孔离子电流信号的特征噪声分段常数数据进行拟合,在短至测量系统上升时间的两倍的瞬态上产生精确的拟合。我们在几个真实数据集和合成数据集上展示了算法的性能。这些发现强调了这种方法在快速分子易位方面的普遍性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信