A digital laboratory with a modular measurement system and standardized data format†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kazunori Nishio, Akira Aiba, Kei Takihara, Yota Suzuki, Ryo Nakayama, Shigeru Kobayashi, Akira Abe, Haruki Baba, Shinichi Katagiri, Kazuki Omoto, Kazuki Ito, Ryota Shimizu and Taro Hitosugi
{"title":"A digital laboratory with a modular measurement system and standardized data format†","authors":"Kazunori Nishio, Akira Aiba, Kei Takihara, Yota Suzuki, Ryo Nakayama, Shigeru Kobayashi, Akira Abe, Haruki Baba, Shinichi Katagiri, Kazuki Omoto, Kazuki Ito, Ryota Shimizu and Taro Hitosugi","doi":"10.1039/D4DD00326H","DOIUrl":null,"url":null,"abstract":"<p >Machine learning, robotics, and data are the keys for accelerating the discovery of new materials. While collecting more data is essential, the experimental processes remain a bottleneck. In this study, we constructed a digital laboratory by interconnecting apparatuses using robots to collect experimental data (synthesis processes and measured physical properties, including measurement conditions) for solid materials research. A variety of modular experimental instruments are physically interconnected, enabling fully automated processes from material synthesis to measurement and analysis. The data from each measurement instrument are outputted in an XML format, namely MaiML, and collected in a cloud-based database. In addition, the data are analyzed by software and utilized on the cloud. Using this system, we demonstrate an autonomous synthesis of high-quality LiCoO<small><sub>2</sub></small> (001) thin films. The system maximized the X-ray diffraction peak-intensity ratio of LiCoO<small><sub>2</sub></small> (001) thin films using Bayesian optimization. This system demonstrates advanced automatic and autonomous material synthesis for data- and robot-driven materials science.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 7","pages":" 1734-1742"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00326h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00326h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning, robotics, and data are the keys for accelerating the discovery of new materials. While collecting more data is essential, the experimental processes remain a bottleneck. In this study, we constructed a digital laboratory by interconnecting apparatuses using robots to collect experimental data (synthesis processes and measured physical properties, including measurement conditions) for solid materials research. A variety of modular experimental instruments are physically interconnected, enabling fully automated processes from material synthesis to measurement and analysis. The data from each measurement instrument are outputted in an XML format, namely MaiML, and collected in a cloud-based database. In addition, the data are analyzed by software and utilized on the cloud. Using this system, we demonstrate an autonomous synthesis of high-quality LiCoO2 (001) thin films. The system maximized the X-ray diffraction peak-intensity ratio of LiCoO2 (001) thin films using Bayesian optimization. This system demonstrates advanced automatic and autonomous material synthesis for data- and robot-driven materials science.

Abstract Image

具有模块化测量系统和标准化数据格式的数字实验室
机器学习、机器人技术和数据是加速新材料发现的关键。虽然收集更多的数据是必要的,但实验过程仍然是一个瓶颈。在本研究中,我们构建了一个数字化实验室,通过机器人连接设备来收集固体材料研究的实验数据(合成过程和测量的物理性质,包括测量条件)。各种模块化实验仪器在物理上相互连接,实现从材料合成到测量和分析的全自动过程。每台测量仪器的数据以XML格式(即maill)输出,并收集到基于云的数据库中。此外,数据通过软件进行分析,并在云上使用。利用该系统,我们展示了高质量LiCoO2(001)薄膜的自主合成。采用贝叶斯优化方法使LiCoO2(001)薄膜的x射线衍射峰强度比最大化。该系统为数据和机器人驱动的材料科学展示了先进的自动和自主材料合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信