A self-driving fluidic lab for data-driven synthesis of lead-free perovskite nanocrystals†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sina Sadeghi, Karl Mattsson, Joshua Glasheen, Victoria Lee, Christine Stark, Pragyan Jha, Nikolai Mukhin, Junbin Li, Arup Ghorai, Negin Orouji, Christopher H. J. Moran, Alireza Velayati, Jeffrey A. Bennett, Richard B. Canty, Kristofer G. Reyes and Milad Abolhasani
{"title":"A self-driving fluidic lab for data-driven synthesis of lead-free perovskite nanocrystals†","authors":"Sina Sadeghi, Karl Mattsson, Joshua Glasheen, Victoria Lee, Christine Stark, Pragyan Jha, Nikolai Mukhin, Junbin Li, Arup Ghorai, Negin Orouji, Christopher H. J. Moran, Alireza Velayati, Jeffrey A. Bennett, Richard B. Canty, Kristofer G. Reyes and Milad Abolhasani","doi":"10.1039/D5DD00062A","DOIUrl":null,"url":null,"abstract":"<p >Copper (Cu)-based metal halide perovskite (MHP) nanocrystals (NCs) have recently gained attention as promising Pb-free and environmentally sustainable alternatives to traditional Pb-based MHPs, offering wide bandgaps, large Stokes shifts, and high emission stability. Despite these advantages, achieving high photoluminescence quantum yields (PLQYs) in Cu-based MHP NCs remains challenging, which impedes their widespread deployment in advanced optoelectronic and energy-related devices. Introducing a metal halide additive in the precursor chemistry can enhance the optical performance of Cu-based MHP NCs, but this approach substantially expands the experimental parameter space, rendering conventional batch-based, trial-and-error methods both time- and resource-intensive. Here, we present a self-driving fluidic lab (SDFL) that combines a modular microfluidic reactor, real-time <em>in situ</em> characterization, and machine-learning-guided decision-making to autonomously explore and optimize high-dimensional Cu-based MHP NC syntheses in the presence of a metal halide additive. Leveraging droplet-based flow chemistry and ensemble neural network-enabled Bayesian optimization, our SDFL rapidly navigates complex precursor formulations and reaction conditions of Cu-based MHP NCs, thus minimizing waste and accelerating discovery. We utilize the SDFL with three distinct precursor chemistries to synthesize Cs<small><sub>3</sub></small>Cu<small><sub>2</sub></small>I<small><sub>5</sub></small> NCs, with zinc iodide (ZnI<small><sub>2</sub></small>) serving as the metal halide additive. The high-fidelity data generated <em>in situ</em> allow for the creation of predictive digital twin models that yield mechanistic insights into additive-assisted NC formation. By iteratively refining synthesis parameters within the SDFL, we achieve Cs<small><sub>3</sub></small>Cu<small><sub>2</sub></small>I<small><sub>5</sub></small> NCs with post-purification PLQYs of approximately 61%, marking a significant improvement over conventional Cu-based MHP NCs. The resulting high-performance, Pb-free NCs underscore the potential of sustainable materials acceleration platforms to speed-up the development of next-generation photonic and energy technologies.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 7","pages":" 1722-1733"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00062a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00062a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Copper (Cu)-based metal halide perovskite (MHP) nanocrystals (NCs) have recently gained attention as promising Pb-free and environmentally sustainable alternatives to traditional Pb-based MHPs, offering wide bandgaps, large Stokes shifts, and high emission stability. Despite these advantages, achieving high photoluminescence quantum yields (PLQYs) in Cu-based MHP NCs remains challenging, which impedes their widespread deployment in advanced optoelectronic and energy-related devices. Introducing a metal halide additive in the precursor chemistry can enhance the optical performance of Cu-based MHP NCs, but this approach substantially expands the experimental parameter space, rendering conventional batch-based, trial-and-error methods both time- and resource-intensive. Here, we present a self-driving fluidic lab (SDFL) that combines a modular microfluidic reactor, real-time in situ characterization, and machine-learning-guided decision-making to autonomously explore and optimize high-dimensional Cu-based MHP NC syntheses in the presence of a metal halide additive. Leveraging droplet-based flow chemistry and ensemble neural network-enabled Bayesian optimization, our SDFL rapidly navigates complex precursor formulations and reaction conditions of Cu-based MHP NCs, thus minimizing waste and accelerating discovery. We utilize the SDFL with three distinct precursor chemistries to synthesize Cs3Cu2I5 NCs, with zinc iodide (ZnI2) serving as the metal halide additive. The high-fidelity data generated in situ allow for the creation of predictive digital twin models that yield mechanistic insights into additive-assisted NC formation. By iteratively refining synthesis parameters within the SDFL, we achieve Cs3Cu2I5 NCs with post-purification PLQYs of approximately 61%, marking a significant improvement over conventional Cu-based MHP NCs. The resulting high-performance, Pb-free NCs underscore the potential of sustainable materials acceleration platforms to speed-up the development of next-generation photonic and energy technologies.

Abstract Image

数据驱动合成无铅钙钛矿纳米晶体的自动流体实验室
铜(Cu)基金属卤化物钙钛矿(MHP)纳米晶体(NCs)作为传统pb基MHP的无铅和环境可持续替代品,具有宽带隙、大斯托克斯位移和高发射稳定性,最近引起了人们的关注。尽管有这些优势,在cu基MHP nc中实现高光致发光量子产率(PLQYs)仍然具有挑战性,这阻碍了它们在先进光电和能源相关器件中的广泛部署。在前驱体化学中引入金属卤化物添加剂可以提高cu基MHP NCs的光学性能,但这种方法大大扩展了实验参数空间,使得传统的基于批量的试错方法既费时又耗资源。在这里,我们提出了一个自动驾驶流体实验室(SDFL),它结合了模块化微流控反应器、实时原位表征和机器学习指导决策,在金属卤化物添加剂存在的情况下自主探索和优化高维cu基MHP NC合成。利用基于液滴的流动化学和集成神经网络的贝叶斯优化,我们的SDFL快速导航复杂的cu基MHP NCs前驱体配方和反应条件,从而最大限度地减少浪费并加速发现。我们利用具有三种不同前体化学物质的SDFL合成了Cs3Cu2I5 NCs,其中碘化锌(ZnI2)作为金属卤化物添加剂。现场生成的高保真数据允许创建预测性数字孪生模型,从而产生对增材辅助数控成形的机理见解。通过在SDFL内迭代优化合成参数,我们获得了纯化后plqy约为61%的Cs3Cu2I5 NCs,这标志着比传统的cu基MHP NCs有了显着改进。由此产生的高性能、无铅nc强调了可持续材料加速平台在加速下一代光子和能源技术发展方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信