Jinpeng Li, Chuxuan Ding, Daobin Liu, Linjiang Chen and Jun Jiang
{"title":"Autonomous laboratories in China: an embodied intelligence-driven platform to accelerate chemical discovery","authors":"Jinpeng Li, Chuxuan Ding, Daobin Liu, Linjiang Chen and Jun Jiang","doi":"10.1039/D5DD00072F","DOIUrl":null,"url":null,"abstract":"<p >The emergence of autonomous laboratories—automated robotic platforms integrated with rapidly advancing artificial intelligence (AI)—is poised to transform research by shifting traditional trial-and-error approaches toward accelerated chemical discovery. These platforms combine AI models, hardware, and software to execute experiments, interact with robotic systems, and manage data, thereby closing the predict-make-measure discovery loop. However, key challenges remain, including how to efficiently achieve autonomous high-throughput experimentation and integrate diverse technologies into cohesive systems. In this perspective, we identify the fundamental elements required for closed-loop autonomous experimentation: chemical science databases, large-scale intelligent models, automated experimental platforms, and integrated management/decision-making systems. Furthermore, with the advancement of AI models, we emphasize the progress from simple iterative-algorithm-driven systems to comprehensive intelligent autonomous systems powered by large-scale models in China, which enable self-driving chemical discovery within individual laboratories. Looking ahead, the development of intelligent autonomous laboratories into a distributed network holds great promise for further accelerating chemical discoveries and fostering innovation on a broader scale.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 7","pages":" 1672-1684"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00072f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00072f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of autonomous laboratories—automated robotic platforms integrated with rapidly advancing artificial intelligence (AI)—is poised to transform research by shifting traditional trial-and-error approaches toward accelerated chemical discovery. These platforms combine AI models, hardware, and software to execute experiments, interact with robotic systems, and manage data, thereby closing the predict-make-measure discovery loop. However, key challenges remain, including how to efficiently achieve autonomous high-throughput experimentation and integrate diverse technologies into cohesive systems. In this perspective, we identify the fundamental elements required for closed-loop autonomous experimentation: chemical science databases, large-scale intelligent models, automated experimental platforms, and integrated management/decision-making systems. Furthermore, with the advancement of AI models, we emphasize the progress from simple iterative-algorithm-driven systems to comprehensive intelligent autonomous systems powered by large-scale models in China, which enable self-driving chemical discovery within individual laboratories. Looking ahead, the development of intelligent autonomous laboratories into a distributed network holds great promise for further accelerating chemical discoveries and fostering innovation on a broader scale.