Autonomous laboratories in China: an embodied intelligence-driven platform to accelerate chemical discovery

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jinpeng Li, Chuxuan Ding, Daobin Liu, Linjiang Chen and Jun Jiang
{"title":"Autonomous laboratories in China: an embodied intelligence-driven platform to accelerate chemical discovery","authors":"Jinpeng Li, Chuxuan Ding, Daobin Liu, Linjiang Chen and Jun Jiang","doi":"10.1039/D5DD00072F","DOIUrl":null,"url":null,"abstract":"<p >The emergence of autonomous laboratories—automated robotic platforms integrated with rapidly advancing artificial intelligence (AI)—is poised to transform research by shifting traditional trial-and-error approaches toward accelerated chemical discovery. These platforms combine AI models, hardware, and software to execute experiments, interact with robotic systems, and manage data, thereby closing the predict-make-measure discovery loop. However, key challenges remain, including how to efficiently achieve autonomous high-throughput experimentation and integrate diverse technologies into cohesive systems. In this perspective, we identify the fundamental elements required for closed-loop autonomous experimentation: chemical science databases, large-scale intelligent models, automated experimental platforms, and integrated management/decision-making systems. Furthermore, with the advancement of AI models, we emphasize the progress from simple iterative-algorithm-driven systems to comprehensive intelligent autonomous systems powered by large-scale models in China, which enable self-driving chemical discovery within individual laboratories. Looking ahead, the development of intelligent autonomous laboratories into a distributed network holds great promise for further accelerating chemical discoveries and fostering innovation on a broader scale.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 7","pages":" 1672-1684"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00072f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00072f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of autonomous laboratories—automated robotic platforms integrated with rapidly advancing artificial intelligence (AI)—is poised to transform research by shifting traditional trial-and-error approaches toward accelerated chemical discovery. These platforms combine AI models, hardware, and software to execute experiments, interact with robotic systems, and manage data, thereby closing the predict-make-measure discovery loop. However, key challenges remain, including how to efficiently achieve autonomous high-throughput experimentation and integrate diverse technologies into cohesive systems. In this perspective, we identify the fundamental elements required for closed-loop autonomous experimentation: chemical science databases, large-scale intelligent models, automated experimental platforms, and integrated management/decision-making systems. Furthermore, with the advancement of AI models, we emphasize the progress from simple iterative-algorithm-driven systems to comprehensive intelligent autonomous systems powered by large-scale models in China, which enable self-driving chemical discovery within individual laboratories. Looking ahead, the development of intelligent autonomous laboratories into a distributed network holds great promise for further accelerating chemical discoveries and fostering innovation on a broader scale.

Abstract Image

中国的自主实验室:加速化学发现的智能驱动平台
自主实验室的出现——自动化机器人平台与快速发展的人工智能(AI)相结合——将通过将传统的试错方法转向加速化学发现,从而改变研究。这些平台结合了人工智能模型、硬件和软件来执行实验,与机器人系统交互,并管理数据,从而关闭了预测-制造-测量的发现循环。然而,关键的挑战仍然存在,包括如何有效地实现自主的高通量实验,并将各种技术集成到内聚系统中。从这个角度来看,我们确定了闭环自主实验所需的基本要素:化学科学数据库、大规模智能模型、自动化实验平台和集成管理/决策系统。此外,随着人工智能模型的进步,我们强调了从简单的迭代算法驱动系统到由中国大规模模型驱动的全面智能自主系统的进展,这将使单个实验室中的自动化学发现成为可能。展望未来,智能自主实验室向分布式网络的发展为进一步加速化学发现和促进更大范围的创新提供了巨大的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信