Global identification, estimation and inference of structural impulse response functions in factor models: A unified framework

IF 9.9 3区 经济学 Q1 ECONOMICS
Xu Han
{"title":"Global identification, estimation and inference of structural impulse response functions in factor models: A unified framework","authors":"Xu Han","doi":"10.1016/j.jeconom.2025.106057","DOIUrl":null,"url":null,"abstract":"<div><div>This paper develops a theory for the global identification, estimation and inference of impulse response functions (IRFs) in structural factor models (SFMs). We examine the impact of normalization choices on IRF identification and propose to use identification restrictions robust to such choices. A new theorem is established to address IRF identification under both recursive and nonrecursive schemes in SFMs. Moreover, we develop two new estimators for structural IRFs under principal component normalization and establish their asymptotic distributions. We also propose a test for overidentifying restrictions. Simulation results demonstrate the validity of the asymptotic approximations and the favorable finite-sample properties of the overidentification test. To illustrate the flexibility of our methodology, we employ a hybrid identification scheme and analyze the dynamic effects of oil shocks using a US dataset.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"251 ","pages":"Article 106057"},"PeriodicalIF":9.9000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407625001113","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a theory for the global identification, estimation and inference of impulse response functions (IRFs) in structural factor models (SFMs). We examine the impact of normalization choices on IRF identification and propose to use identification restrictions robust to such choices. A new theorem is established to address IRF identification under both recursive and nonrecursive schemes in SFMs. Moreover, we develop two new estimators for structural IRFs under principal component normalization and establish their asymptotic distributions. We also propose a test for overidentifying restrictions. Simulation results demonstrate the validity of the asymptotic approximations and the favorable finite-sample properties of the overidentification test. To illustrate the flexibility of our methodology, we employ a hybrid identification scheme and analyze the dynamic effects of oil shocks using a US dataset.
因子模型中结构冲击响应函数的全局辨识、估计和推断:一个统一的框架
本文提出了结构因子模型中脉冲响应函数(irf)的全局辨识、估计和推断理论。我们研究了归一化选择对IRF识别的影响,并提出使用对这些选择具有鲁棒性的识别限制。建立了一个新的定理,解决了在非线性多目标矩阵中递归格式和非递归格式下的IRF辨识问题。此外,我们在主成分归一化条件下建立了两个新的结构irf估计量,并建立了它们的渐近分布。我们还提出了一个过度识别限制的测试。仿真结果证明了渐近逼近的有效性和过辨识检验良好的有限样本性质。为了说明我们方法的灵活性,我们采用了一种混合识别方案,并使用美国数据集分析了石油冲击的动态影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信