Crop2Cloud platform: Real-time data integration for agricultural water monitoring

IF 5.7 Q1 AGRICULTURAL ENGINEERING
Bryan Nsoh , Abia Katimbo , Kendall C. DeJonge , Weizhen Liang , Hongzhi Guo , Yufeng Ge , Derek M. Heeren , Yeyin Shi , Xin Qiao , Daran R. Rudnick , Hope Njuki Nakabuye , Birru Girma , Isa Kabenge , Joshua Wanyama
{"title":"Crop2Cloud platform: Real-time data integration for agricultural water monitoring","authors":"Bryan Nsoh ,&nbsp;Abia Katimbo ,&nbsp;Kendall C. DeJonge ,&nbsp;Weizhen Liang ,&nbsp;Hongzhi Guo ,&nbsp;Yufeng Ge ,&nbsp;Derek M. Heeren ,&nbsp;Yeyin Shi ,&nbsp;Xin Qiao ,&nbsp;Daran R. Rudnick ,&nbsp;Hope Njuki Nakabuye ,&nbsp;Birru Girma ,&nbsp;Isa Kabenge ,&nbsp;Joshua Wanyama","doi":"10.1016/j.atech.2025.101166","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient water management is vital for sustainable agriculture, yet integrating real-time data for precise irrigation remains a challenge. This study designed the Crop2Cloud (C2C) platform, a system that leverages advanced sensors using Internet of Things (IoT), edge and cloud computing techniques, and computed Water Stress Indices (WSIs) and machine learning models (i.e., fuzzy logic), to provide scalable and real-time irrigation decisions. The C2C platform aggregates several data including Volumetric Water Content (VWC) from TDR sensors (Acclima Inc., US) installed at four multiple depths, canopy temperatures (T<sub>c</sub>) measured by Infrared Radiometers (IRTs) (Apogee Instruments, US), as well as weather information and estimated Crop Evapotranspiration (ET<sub>c</sub>) from FAO56 approach. Computed WSIs included the theoretical Crop Water Stress Index (CWSI) and Soil Water Stress Index (SWSI) as a ratio of Volumetric Water Content (VWC), measured and that at Field Capacity (FC) and Maximum Allowable Depletion (MAD). Additionally, fuzzy-logic irrigation schedule was developed using different fuzzy rules and three available water use indicators – CWSI, SWSI, and ET<sub>c</sub>. A designed dashboard can display collected data, computed WSIs, and irrigation recommendations from selected methods: only CWSI, only SWSI, combining SWSI + CWSI, and fuzzy logic. The C2C platform can provide quick and real-time crop performance insights and data-driven decisions for timely water application. However, there are logistical challenges such as sensor damage and power management which impact the platform’s performance and efficiency. Future work will involve refining the system to avoid data gaps and improving scheduling methods to optimize irrigation applications to increase water and energy savings.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"12 ","pages":"Article 101166"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525003983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient water management is vital for sustainable agriculture, yet integrating real-time data for precise irrigation remains a challenge. This study designed the Crop2Cloud (C2C) platform, a system that leverages advanced sensors using Internet of Things (IoT), edge and cloud computing techniques, and computed Water Stress Indices (WSIs) and machine learning models (i.e., fuzzy logic), to provide scalable and real-time irrigation decisions. The C2C platform aggregates several data including Volumetric Water Content (VWC) from TDR sensors (Acclima Inc., US) installed at four multiple depths, canopy temperatures (Tc) measured by Infrared Radiometers (IRTs) (Apogee Instruments, US), as well as weather information and estimated Crop Evapotranspiration (ETc) from FAO56 approach. Computed WSIs included the theoretical Crop Water Stress Index (CWSI) and Soil Water Stress Index (SWSI) as a ratio of Volumetric Water Content (VWC), measured and that at Field Capacity (FC) and Maximum Allowable Depletion (MAD). Additionally, fuzzy-logic irrigation schedule was developed using different fuzzy rules and three available water use indicators – CWSI, SWSI, and ETc. A designed dashboard can display collected data, computed WSIs, and irrigation recommendations from selected methods: only CWSI, only SWSI, combining SWSI + CWSI, and fuzzy logic. The C2C platform can provide quick and real-time crop performance insights and data-driven decisions for timely water application. However, there are logistical challenges such as sensor damage and power management which impact the platform’s performance and efficiency. Future work will involve refining the system to avoid data gaps and improving scheduling methods to optimize irrigation applications to increase water and energy savings.
Crop2Cloud平台:农业用水监测实时数据集成
高效的水资源管理对可持续农业至关重要,但整合实时数据以实现精准灌溉仍然是一项挑战。本研究设计了Crop2Cloud (C2C)平台,该系统利用物联网(IoT)、边缘和云计算技术、计算水压力指数(wsi)和机器学习模型(即模糊逻辑)等先进传感器,提供可扩展的实时灌溉决策。C2C平台收集了几个数据,包括安装在四个不同深度的TDR传感器(Acclima Inc.,美国)的体积含水量(VWC),红外辐射计(IRTs)测量的冠层温度(Tc) (Apogee Instruments,美国),以及天气信息和FAO56方法估计的作物蒸散量(ETc)。计算的水分胁迫指数包括作物理论水分胁迫指数(CWSI)和土壤水分胁迫指数(SWSI)与实测的体积含水量(VWC)、田间容量(FC)和最大允许耗竭(MAD)的比值。此外,利用不同的模糊规则和CWSI、SWSI等3个可用水分利用指标,制定了模糊逻辑灌溉计划。设计的仪表板可以显示收集的数据,计算的wsi,以及从选定的方法:仅CWSI,仅SWSI, SWSI + CWSI组合和模糊逻辑的灌溉建议。C2C平台可以提供快速实时的作物性能洞察和数据驱动的决策,以便及时浇水。然而,存在诸如传感器损坏和电源管理等后勤挑战,这些挑战会影响平台的性能和效率。未来的工作将包括改进系统以避免数据差距,改进调度方法以优化灌溉应用,以增加节水和节能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信