{"title":"The DeMorganization of a locale","authors":"Igor Arrieta","doi":"10.1016/j.apal.2025.103634","DOIUrl":null,"url":null,"abstract":"<div><div>In 2009, Caramello proved that each topos has a largest dense subtopos whose internal logic satisfies De Morgan law (also known as the law of the weak excluded middle). This finding implies that every locale has a largest dense extremally disconnected sublocale, referred to as its DeMorganization. In this paper, we take the first steps in exploring the DeMorganization in the localic context, shedding light on its geometric nature by showing that it is always a fitted sublocale and by providing a concrete description. Explicit examples of DeMorganizations for toposes that do not satisfy De Morgan law are rather difficult to find. We present a contribution in that direction, with the main result of the paper showing that for any metrizable locale (without isolated points), its DeMorganization coincides with its Booleanization. This, in particular, implies that any extremally disconnected metric locale (without isolated points) must be Boolean, generalizing a well-known result for topological spaces to the localic setting.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 10","pages":"Article 103634"},"PeriodicalIF":0.6000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007225000831","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
In 2009, Caramello proved that each topos has a largest dense subtopos whose internal logic satisfies De Morgan law (also known as the law of the weak excluded middle). This finding implies that every locale has a largest dense extremally disconnected sublocale, referred to as its DeMorganization. In this paper, we take the first steps in exploring the DeMorganization in the localic context, shedding light on its geometric nature by showing that it is always a fitted sublocale and by providing a concrete description. Explicit examples of DeMorganizations for toposes that do not satisfy De Morgan law are rather difficult to find. We present a contribution in that direction, with the main result of the paper showing that for any metrizable locale (without isolated points), its DeMorganization coincides with its Booleanization. This, in particular, implies that any extremally disconnected metric locale (without isolated points) must be Boolean, generalizing a well-known result for topological spaces to the localic setting.
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.