Valentina Gosetti , Jorge Cervantes-Villanueva , Selene Mor , Davide Sangalli , Alberto García-Cristóbal , Alejandro Molina-Sánchez , Vadim F. Agekyan , Manuel Tuniz , Denny Puntel , Wibke Bronsch , Federico Cilento , Stefania Pagliara
{"title":"Unveiling the exciton formation in time, energy and momentum domain in layered van der Waals semiconductors","authors":"Valentina Gosetti , Jorge Cervantes-Villanueva , Selene Mor , Davide Sangalli , Alberto García-Cristóbal , Alejandro Molina-Sánchez , Vadim F. Agekyan , Manuel Tuniz , Denny Puntel , Wibke Bronsch , Federico Cilento , Stefania Pagliara","doi":"10.1016/j.progsurf.2025.100777","DOIUrl":null,"url":null,"abstract":"<div><div>Resolving the early-stage dynamics of exciton formation following non-resonant photoexcitation in time, energy, and momentum is quite challenging due to their inherently fast timescales and the proximity of the excitonic state to the bottom of the conduction band. In this study, by combining time- and angle-resolved photoemission spectroscopy with <em>ab initio</em> numerical simulations, we capture the timing of the early-stage exciton dynamics in energy and momentum, starting from the photoexcited population in the conduction band, progressing through the formation of free excitons, and ultimately leading to their trapping in lattice deformations. The chosen material is bismuth tri-iodide (BiI<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>), a layered semiconductor with a rich landscape of excitons in the electronic structure both in bulk and in monolayer form. The obtained results, providing a full characterization of the exciton formation, elucidate the early stages of the physical phenomena underlying the operation of the ultrafast semiconductor device.</div></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":"100 2","pages":"Article 100777"},"PeriodicalIF":7.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Surface Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079681625000115","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Resolving the early-stage dynamics of exciton formation following non-resonant photoexcitation in time, energy, and momentum is quite challenging due to their inherently fast timescales and the proximity of the excitonic state to the bottom of the conduction band. In this study, by combining time- and angle-resolved photoemission spectroscopy with ab initio numerical simulations, we capture the timing of the early-stage exciton dynamics in energy and momentum, starting from the photoexcited population in the conduction band, progressing through the formation of free excitons, and ultimately leading to their trapping in lattice deformations. The chosen material is bismuth tri-iodide (BiI), a layered semiconductor with a rich landscape of excitons in the electronic structure both in bulk and in monolayer form. The obtained results, providing a full characterization of the exciton formation, elucidate the early stages of the physical phenomena underlying the operation of the ultrafast semiconductor device.
期刊介绍:
Progress in Surface Science publishes progress reports and review articles by invited authors of international stature. The papers are aimed at surface scientists and cover various aspects of surface science. Papers in the new section Progress Highlights, are more concise and general at the same time, and are aimed at all scientists. Because of the transdisciplinary nature of surface science, topics are chosen for their timeliness from across the wide spectrum of scientific and engineering subjects. The journal strives to promote the exchange of ideas between surface scientists in the various areas. Authors are encouraged to write articles that are of relevance and interest to both established surface scientists and newcomers in the field.